首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python中对复数取绝对值来计算两点之间的距离

参考链接: Python中的复数1(简介) 在二维平面会涉及到两个变量x, y,并且有的时候需要计算两个二维坐标之间的距离,这个时候将二维坐标转化为复数的话那么就可以使用python中的abs绝对值函数对复数取绝对值来计算两个点之间的距离或者是计算复数的模...,当我们将两个复数对应的坐标相减然后对其使用abs绝对值函数那么得到的就是两点之间的距离,对一个复数取绝对值得到的就是复数的模长  if __name__ == '__main__':     points...= [[1, 0], [0, 1], [2, 1], [1, 2]]     for i in points:         print(i)     # 使用python中的解包将每个点转换为复数表现形式...    points = [complex(*z) for z in points]     for i in range(len(points)):         # 计算每个复数的模长        ...points[i] = abs(points[i])     print(points)     # 比如计算(0, 1) (1, 2)两点之间的距离     point1 = complex(0, 1

2.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    写一只具有识别能力的图片爬虫

    很显然,在没有经过训练的计算机(即建立模型),那么计算机很难区分什么是海洋,什么是沙漠。但是计算机很容易识别到图像的像素值。 因此,在图像识别中,颜色特征是最为常用的。...是的,我们可以明显的发现,两张图片的直方图是近似重合的。所以利用直方图判断两张图片的是否相似的方法就是,计算其直方图的重合程度即可。 计算方法如下: ? 其中gi和si是分别指两条曲线的第i个点。...中,可用Image的对象的方法convert('L')直接转换为灰度图 3.计算平均值:计算进行灰度处理后图片的所有像素点的平均值。...(具体算法见平均哈希算法步骤) 计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值 获得指纹:如果左边的像素比右边的更亮,则记录为1,...两种操作分别在我的github中实现了,请参考我的github中face1.py,和face2.py两个python文件。

    1.9K50

    基于协同过滤的推荐引擎(理论部分)

    电影_用户矩阵.png 相似度计算 欧式距离 欧氏距离指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。...在二维和三维空间中的欧氏距离就是两点之间的实际距离,就是那个“根号下横坐标差的平方加纵坐标差的平方”。...一条狗与海洋奇缘的欧氏距离.png Python实现代码: import numpy as np def eulid_sim(colA, colB): return 1.0/(1.0 + np.linalg.norm...z分数是一种可以看出某分数在分布中相对位置的方法。z分数能够真实的反应一个分数距离平均数的相对标准距离。...np.linalg.norm(colB) return 0.5 + 0.5 * (num / denom) 相似度选择 计算两个电影之间的距离,是基于物品(item-based)的相似度,计算用户的距离

    1K50

    Python可视化数据分析04、NumPy库使用

    power()函数:将第一个输入数组中的元素作为底数,计算它与第二个输入数组中相应元素的幂。...mod()函数:计算输入数组中相应元素的相除后的余数 统计函数 amin()函数:用于计算数组中的元素沿指定轴的最小值。 amax()函数:用于计算数组中的元素沿指定轴的最大值。...()函数用于计算两点之间的距离 在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。...使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。...x1 = np.array([[1, 2]]) x2 = np.array([[4, 5]]) # 通过cdist函数,计算两个点之间的距离·欧氏距离 distance = cdist(x1, x2

    1.5K40

    基于协同过滤的推荐引擎(理论部分)

    相似度计算 欧氏距离(euclidean metric) 欧氏距离指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。...在二维和三维空间中的欧氏距离就是两点之间的实际距离,就是那个“根号下横坐标差的平方加纵坐标差的平方”。...z分数是一种可以看出某分数在分布中相对位置的方法。z分数能够真实的反应一个分数距离平均数的相对标准距离。...(colB) return 0.5 + 0.5 * (num / denom) 相似度选择 计算两个电影之间的距离,是基于物品(item-based)的相似度,计算用户的距离,是基于用户(user-based...整个过程的作用就是从两个物品列中晒出两物品都被评分的行的下标,用于相似度计算。

    92790

    原理+代码|详解层次聚类及Python实现

    拿到数据集后,直接根据特征或指标来将样本分类的做法其实更适合业务能力比较强的人或有了十分明确的指标如男女各一类等硬性要求,所以本文以样本之间的距离为聚类指标。...下面这一段仔细阅读的话对理解点与点,类与类,点与类之间的距离是如何在层次树上体现很有帮助。...先从最矮的高度只有 d1 小树说起,这就是类 1,3 中两个孤立的点 1 和 3 之间的距离;同理,d2 为类2,5 中点 2 和 5 之间的距离。...点与点的距离很好求,我们一般用的都是欧氏距离,即初中学习的直角三角形三边关系,上图右上角点AC之间的距离(ab² + bc²) 后再开根号 而至于类与类之间的距离求法,其实经过了一个演变,篇幅原因本文只会一笔带过那些不常用的方法并将重心放在最常用和主流的方法上...分类变量无法计算距离,如某个变量表示的是性别,男和女;教育程度为小学,初中,高中,大学,那该变量在各个个体之间的距离怎么计算?所以做聚类分析时尽可能用分类变量。

    5K10

    python-opencv2利用cv2.findContours()函数来查找检测物体的轮廓

    contour返回值 cv2.findContours()函数首先返回一个list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。这个概念非常重要。...会看到本例中有两条轮廓,一个是五角星的,一个是矩形的。每个轮廓是一个ndarray,每个ndarray是轮廓上的点的集合。...补充: OpenCV-Python教程(11、轮廓检测)_sunny2038的专栏-CSDN博客_轮廓检测博客提到,可用下面的方式计算得到轮廓的极值点,如下 pentagram = contours[1...人民邮电出版社出版了一本《NumPy攻略:Python科学计算与数据分析》,推荐去看一下。 更新:关于pentagram[:,0]的意思 在numpy的数组中,用逗号分隔的是轴的索引。...官方文档Contour部分 关于 Python opencv 使用中的 ValueError: too many values to unpack_jjddss的专栏-CSDN博客 opencv3可能会报

    4.9K21

    【知识图谱系列】探索DeepGNN中Over-Smoothing问题

    在计算机视觉中,模型CNN随着其层次加深可以学习到更深层次的特征信息,叠加64层或128层是十分正常的现象,且能较浅层取得更优的效果。...图卷积神经网络GCNs是一种针对图结构数据的深度学习方法,但目前大多数的GCN模型都是浅层的,如GCN,GAT模型都是在2层时取得最优效果,随着加深模型效果就会大幅度下降,经研究GCN随着模型层次加深会出现...衡量了图中任意两个节点之间的欧氏距离之和,SVM_?越小表示图学习时Over-Smoothing越严重当,当SVM_?=0时,图中所有节点完全相同,也可以从图中看出随着层次的加深,SVM_?...representation和初始层representation之间进行权重选择,而Identity Mapping是在参数W和单位矩阵I之间设置权重选择,如下公式所示: ?...]} ind.dataset_str.test.index=>测试实例的id,2157行上述文件必须都用python的pickle模块存储 2、实验结果 实验结果在Cora,citeseer,pubmed

    73220

    【模式识别】探秘分类奥秘:K-近邻算法解密与实战

    OpenCV库: 图像处理: OpenCV库作为计算机视觉领域的重要工具,为图像处理和可视化提供了广泛的功能。包括图像读取、处理、特征提取等一系列操作,为图像相关的应用提供了基础支持。...距离度量: KNN 算法通常使用欧氏距离来度量两个数据点之间的距离,但也可以使用其他距离度量方法,如曼哈顿距离、闵可夫斯基距离等。...欧氏距离计算公式为:distance(A,B)=∑i=1n​(Ai​−Bi​)2​ 确定 K 值: K 是一个用户预先指定的超参数,代表选择最近邻的数量。...Distance函数: 计算两个数据点之间的欧氏距离。 max函数: 返回KNN数组中距离最大的邻居的索引。 Classify函数: 使用KNN方法对一个输入向量进行分类。...距离度量对模型性能的影响: 实验中尝试了不同的距离度量方法,如欧式距离和曼哈顿距离,发现在不同数据集上它们的效果有所差异。这使我认识到在选择距离度量时需要考虑数据的特点,以及不同度量方法对模型的影响。

    22610

    10个机器学习中常用的距离度量方法

    但在做出决定之前,我们需要了解距离测量是如何工作的,以及我们可以从哪些测量中进行选择。 本文将简要介绍常用的距离度量方法、它们的工作原理、如何用Python计算它们以及何时使用它们。...几何距离测量 1、欧氏距离 Euclidean distance 欧氏距离度量两个实值向量之间的最短距离。...欧氏距离也可称为l2范数,其计算方法为: Python代码如下 from scipy.spatial import distance distance.euclidean(vector_1, vector...10、动态时间规整 Dynamic Time Warping 动态时间规整是测量两个不同长度时间序列之间距离的一种重要方法。可以用于所有时间序列数据的用例,如语音识别或异常检测。...总结 在这篇文章中,简要介绍了十种常用的距离测量方法。本文中已经展示了它们是如何工作的,如何在Python中实现它们,以及经常使用它们解决什么问题。

    1.3K30

    机器学习 KNN算法预测城市空气质量

    例如样本特征中包含颜色,可通过将颜色转换为灰度值来实现距离计算。...样本特征要做归一化处理 样本有多个参数,每一个参数都有自己的定义域和取值范围,他们对距离计算的影响不一样,如取值较大的影响力会盖过取值较小的参数。...需要一个距离函数以计算两个样本之间的距离 通常使用的距离函数有:欧氏距离、余弦距离、汉明距离、曼哈顿距离等,一般选欧氏距离作为距离度量,但是这是只适用于连续变量。...以计算二维空间中的A(x1,y1)、B(x2,y2)两点之间的距离为例,常用的欧氏距离的计算方法如下图所示: [p7dy1av5q8.png] 确定K的值 K值选的太大易引起欠拟合,太小容易过拟合,需交叉验证确定...二、KNN算法实现思路 [dwff8l6ofx.png] 要自己动手用 Python 实现 KNN 算法,主要有以下三个步骤: 算距离:给定待分类样本,计算它与已分类样本中的每个样本的距离; 找邻居:圈定与待分类样本距离最近的

    1.3K20

    常用距离算法 (原理、使用场景、Python实现代码)

    来源:DeepHub IMBA本文约1700字,建议阅读5分钟本文为你介绍常用的距离度量方法、它们的工作原理、如何用Python计算它们以及何时使用它们。...几何距离测量 1、欧氏距离 Euclidean distance 欧氏距离度量两个实值向量之间的最短距离。...欧氏距离也可称为l2范数,其计算方法为: Python代码如下: from scipy.spatial import distancedistance.euclidean(vector_1, vector...10、动态时间规整 Dynamic Time Warping 动态时间规整是测量两个不同长度时间序列之间距离的一种重要方法。可以用于所有时间序列数据的用例,如语音识别或异常检测。...总结 在这篇文章中,简要介绍了十种常用的距离测量方法。本文中已经展示了它们是如何工作的,如何在Python中实现它们,以及经常使用它们解决什么问题。

    1.2K20

    探索 DeepFace 的奥妙和实力

    特征提取:通过训练有素的深度学习模型,如 VGG-Face、Facenet 等,从对齐的人脸中提取特征。匹配与分析:最后,将提取的特征用于面部识别、比较或面部属性分析。...接受精确的图像路径作为字符串、numpy 数组 (BGR)、base64 编码的图像或预先计算的嵌入。...- 'distance' (float): 面部向量之间的距离度量。距离越小,相似度越高。 - 'threshold' (float): 用于验证的最大阈值。...此阈值用于比较距离。如果未设置,则根据指定的模型名称和距离度量应用默认预调阈值(默认是 None)。...这些功能背后,涵盖了对 TensorFlow 框架深度定制的应用,以及对一系列先进的计算机视觉技术的集成应用。

    39010

    Python中的cython介绍

    它是Python和C/C++之间的一种桥梁,可以提供更高的执行效率和更好的性能。...Python是一种解释型的动态语言,虽然易于学习和使用,但在执行效率上相对较低。特别是在处理大量数据、进行复杂计算或需要高性能的任务时,Python的执行速度可能会成为瓶颈。...Cython的代码文件通常使用​​.pyx​​作为文件扩展名。在代码中,可以使用Python的语法和标准库,同时还可以使用Cython提供的特性,如类型声明、静态类型检查和C/C++函数的调用。...最后,使用OpenCV库显示黑白图像。 通过使用Cython优化图像处理算法,我们可以提高代码的执行效率,加快图像处理的速度。 希望这个示例对你理解如何在实际应用中使用Cython有所帮助!...与Cython相比,Numba更注重对数值计算代码的优化,可以通过装饰器的方式直接对Python函数进行加速。

    67431

    Numpy库

    NumPy(Numerical Python)是Python语言的一个扩展程序库,主要用于科学计算和数据分析。...它提供了多维数组对象以及各种派生对象(如掩码数组和矩阵),并包含大量用于快速数组操作的数学函数库。 基础知识 数组创建 NumPy的主要数据结构是ndarray,即同质的多维数组。...可以通过以下几种方式创建ndarray: 从其他Python结构转换:例如列表和元组。...矩阵距离:计算两个矩阵之间的距离。 矩阵逆和伴随矩阵:求解矩阵的逆矩阵和伴随矩阵。 解多元一次方程:求解线性方程组。 求矩阵的秩:计算矩阵的秩。 傅立叶变换:用于频域分析。...处理NaN值的函数:如nanmax()、nanmin()等,用于处理包含NaN值的数组操作。 如何在NumPy中实现矩阵分解算法?

    9510
    领券