在Scala Spark中将两个JSON结果合并为一个数据帧可以通过以下步骤实现:
import org.apache.spark.sql.{SparkSession, DataFrame}
import org.apache.spark.sql.functions._
val spark = SparkSession.builder()
.appName("Merge JSON DataFrames")
.getOrCreate()
val json1 = """
{"id": 1, "name": "John", "age": 25}
{"id": 2, "name": "Jane", "age": 30}
"""
val json2 = """
{"id": 3, "name": "Bob", "age": 35}
{"id": 4, "name": "Alice", "age": 28}
"""
val df1 = spark.read.json(Seq(json1).toDS())
val df2 = spark.read.json(Seq(json2).toDS())
val mergedDF = df1.union(df2)
mergedDF.show()
完整代码示例:
import org.apache.spark.sql.{SparkSession, DataFrame}
import org.apache.spark.sql.functions._
val spark = SparkSession.builder()
.appName("Merge JSON DataFrames")
.getOrCreate()
val json1 = """
{"id": 1, "name": "John", "age": 25}
{"id": 2, "name": "Jane", "age": 30}
"""
val json2 = """
{"id": 3, "name": "Bob", "age": 35}
{"id": 4, "name": "Alice", "age": 28}
"""
val df1 = spark.read.json(Seq(json1).toDS())
val df2 = spark.read.json(Seq(json2).toDS())
val mergedDF = df1.union(df2)
mergedDF.show()
这样就可以将两个JSON结果合并为一个数据帧。请注意,这只是一个简单的示例,实际应用中可能需要根据具体情况进行适当的调整和处理。
领取专属 10元无门槛券
手把手带您无忧上云