首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何提高ARKit测量两个SCNNodes之间距离的精度?

要提高ARKit测量两个SCNNodes之间距离的精度,可以考虑以下几个方面:

  1. 使用更精确的特征点:ARKit使用视觉惯性里程计(Visual Inertial Odometry)来跟踪设备的位置和方向。在测量距离时,ARKit会使用检测到的特征点来计算相机的位置。因此,如果能够提供更多、更准确的特征点,就能提高测量距离的精度。可以通过增加场景中的纹理、使用更复杂的模型或者增加光照条件来提高特征点的质量。
  2. 使用更精确的几何信息:ARKit提供了场景中检测到的平面和特征点的几何信息。利用这些几何信息,可以计算出两个SCNNodes之间的距离。如果需要更高的精度,可以考虑使用更精确的几何信息,例如使用更高分辨率的深度图像或者使用其他传感器(如Lidar)来获取更准确的深度信息。
  3. 进行多次测量取平均:由于ARKit的测量结果可能会受到噪声和误差的影响,可以进行多次测量并取平均值来提高精度。可以在一段时间内进行多次测量,然后将测量结果进行平均,以减小误差的影响。
  4. 使用更精确的算法:ARKit提供了一些用于测量距离的API,例如hitTest(_:types:)方法可以用于检测场景中的物体并计算其距离。可以根据具体的需求选择合适的算法来提高测量精度。例如,可以使用更精确的几何算法或者结合其他传感器的数据进行计算。

总结起来,要提高ARKit测量两个SCNNodes之间距离的精度,可以通过提供更精确的特征点和几何信息、进行多次测量取平均以及使用更精确的算法来实现。具体的实现方式可以根据具体的场景和需求进行调整。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

高分辨率、实时的手持物体360°三维模型重建结构光技术

真实物体完整形状的数字化在智能制造、工业检测和反向建模等领域具有重要的应用价值。为了构建刚性对象的完整几何模型,对象必须相对于测量系统(或扫描仪必须相对于对象移动),以获取和集成对象的视图,这不仅使系统配置复杂,而且使整个过程耗时。在这封信中,我们提出了一种高分辨率的实时360°三维(3D)模型重建方法,该方法允许人们手动旋转一个物体,并在扫描过程中看到一个不断更新的三维模型。多视图条纹投影轮廓测量系统从不同的角度获取一个手持物体的高精度深度信息,同时将多个视图实时对齐并合并在一起。我们的系统采用了立体相位展开和自适应深度约束,可以在不增加捕获图案的数量的情况下,稳健地展开密集条纹图像的相位。然后,我们开发了一种有效的从粗到细的配准策略来快速匹配三维表面段。实验结果表明,该方法可以在任意旋转条件下重建复杂物体的高精度完整三维模型,而无需任何仪器辅助和昂贵的预/后处理。

02

Chemical Science | SDEGen:基于随机微分方程的构象生成模型

本文介绍一篇来自浙江大学侯廷军教授、康玉副教授和碳硅智慧联合发表在Chemical Science的论文《SDEGen: Learning to Evolve Molecular Conformations from Thermodynamic Noise for Conformation Generation》。该论文提出了一种将分子力学当中的随机动力学系统和深度学习当中的概率模型相结合的小分子三维构象生成模型:SDEGen。作者采用随机微分方程(Stochastic Differential Equation, SDE)模拟分子构象从热噪声分布到热平衡分布的过程,联合概率深度学习的最新DDIM(Denoising Diffusion Implicit Models)模型,不仅提高了模型生成构象的效率,并且在多项评测任务(包括构象生成质量、原子间距离分布和构象簇的热力学性质)上实现了精度的提升。如在构象生成质量上,其多样性指标优于传统方法22%,准确性指标优于传统方法40%;在热力学性质预测方面,将传统方法的精度提升了一个数量级,与量化计算的结果误差缩小至~2kJ/mol。除此之外,这篇文章还引入了晶体构象的比对实验和势能面分布实验,为构象生成任务的评测提供了更多维及更物理的视角。大量的实验表明,SDEGen不仅可以搜索到小分子晶体构象所在的势能面的势阱当中,还可以搜索到完整势能面上多个局域优势构象。同时,SDEGen模型计算效率极高,在分子对接、药效团识别、定量构效关系等药物设计任务中具有广泛的应用前景。

03

《移动互联网技术》第三章 无线定位技术:掌握位置服务和室内定位的基本概念和工作原理

《移动互联网技术》课程是软件工程、电子信息等专业的专业课,主要介绍移动互联网系统及应用开发技术。课程内容主要包括移动互联网概述、无线网络技术、无线定位技术、Android应用开发和移动应用项目实践等五个部分。移动互联网概述主要介绍移动互联网的概况和发展,以及移动计算的特点。无线网络技术部分主要介绍移动通信网络(包括2G/3G/4G/5G技术)、无线传感器网络、Ad hoc网络、各种移动通信协议,以及移动IP技术。无线定位技术部分主要介绍无线定位的基本原理、定位方法、定位业务、数据采集等相关技术。Android应用开发部分主要介绍移动应用的开发环境、应用开发框架和各种功能组件以及常用的开发工具。移动应用项目实践部分主要介绍移动应用开发过程、移动应用客户端开发、以及应用开发实例。 课程的教学培养目标如下: 1.培养学生综合运用多门课程知识以解决工程领域问题的能力,能够理解各种移动通信方法,完成移动定位算法的设计。 2.培养学生移动应用编程能力,能够编写Andorid应用的主要功能模块,并掌握移动应用的开发流程。 3. 培养工程实践能力和创新能力。  通过本课程的学习应达到以下目的: 1.掌握移动互联网的基本概念和原理; 2.掌握移动应用系统的设计原则; 3.掌握Android应用软件的基本编程方法; 4.能正确使用常用的移动应用开发工具和测试工具。

01

ACOUSLIC-AI2024——腹围超声自动测量验证集结果

在资源匮乏的环境中诊断胎儿生长受限具有挑战性。胎儿生长受限 (FGR) 影响高达 10% 的妊娠,是导致围产期发病率和死亡率的关键因素。FGR 与死产密切相关,还可能导致早产,给母亲带来风险。这种情况通常是由于各种母体、胎儿和胎盘因素阻碍胎儿遗传生长潜力所致。产前超声检查中胎儿腹围 (AC) 的测量是监测胎儿生长的一个关键方面。当小于预期时,这些测量值可以指示 FGR,这种情况与大约 60% 的胎儿死亡有关。FGR 诊断依赖于对胎儿腹围 (AC)、预期胎儿体重或两者的重复测量。这些测量必须至少进行两次,两次测量之间至少间隔两周,才能得出可靠的诊断。此外,AC 测量值低于第三个百分位数本身就足以诊断 FGR。然而,由于超声检查设备成本高昂且缺乏训练有素的超声检查人员,对 AC 测量至关重要的生物识别产科超声的常规实践在资源匮乏的环境中受到限制。

01

婴儿EEG数据的多元模式分析(MVPA):一个实用教程

时间分辨多变量模式分析(MVPA)是一种分析磁和脑电图神经成像数据的流行技术,它量化了神经表征支持相关刺激维度识别的程度和时间过程。随着脑电图在婴儿神经成像中的广泛应用,婴儿脑电图数据的时间分辨MVPA是婴儿认知神经科学中一个特别有前途的工具。最近,MVPA已被应用于常见的婴儿成像方法,如脑电图和fNIRS。在本教程中,我们提供并描述了代码,以实现婴儿脑电图数据的MVPA分析。来自测试数据集的结果表明,在婴儿和成人,这种方法具有较高的准确性。同时,我们对分类方法进行了扩展,包括基于几何和基于精度的表示相似度分析。由于在婴儿研究中,每个参与者贡献的无伪影脑电图数据量低于儿童和成人研究,我们还探索和讨论了不同参与者水平的纳入阈值对这些数据集中产生的MVPA结果的影响。

03
领券