首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

周志华《机器学习》第2章部分笔记

①误差(error):学习器的预测输出与样本的真实输出之间的差异 ②训练误差(training error)或经验误差(empirical error):在训练集上的误差 ③测试误差(test error):在测试集上的误差 ④泛化误差(generalization error):学习器在所有新样本上的误差 ⑤过拟合(overfitting):学习能力过于强大,把训练样本自身的一些特点当成所有潜在样本都会有的一般性质,导致泛化能力下降 ⑥欠拟合(underfitting):学习能力太差,对训练样本的一般性质尚未学好 在过拟合问题中,训练误差很小,但测试误差很大;在欠拟合问题中,训练误差和测试误差都比较大。目前,欠拟合问题容易克服,如在决策树中扩展分支,在神经网络中增加训练轮数;但过拟合问题是机器学习面临的关键障碍。 ⑦模型选择:在理想状态下,选择泛化误差最小的学习器。

03

教你如何用python解决非平衡数据建模(附代码与数据)

本次分享的主题是关于数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换。 SMOTE算法的介绍 在实际应用中,读者可能会碰到一种比较头疼的问题,那就是分类问题中类别型的因变量可能存在严重的偏倚,即类别之间的比例严重失调。如欺诈问题中,欺诈类观测在样本集中毕竟占少数;客户流失问题中,非忠实的客户往往也是占很少一部分;在某营销活动的响应问题中,真正参与活动的客户也同样只是少部分。 如果数据存在严重的不平衡,预测得出的结论往往也是有偏的,

08

用R语言实现对不平衡数据的四种处理方法

在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性。那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测。因此,机器学习算法常常被要求应用在平衡数据集上。那我们该如何处理不平衡数据集?本文会介绍一些相关方法,它们并不复杂只是技巧性比较强。 本文会介绍处理非平衡分类数据集的一些要点,并主要集中于非平衡二分类问题的处理。一如既往,我会尽量精简地叙述,在文

08

用R语言实现对不平衡数据的四种处理方法

在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性。那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测。因此,机器学习算法常常被要求应用在平衡数据集上。那我们该如何处理不平衡数据集?本文会介绍一些相关方法,它们并不复杂只是技巧性比较强。 本文会介绍处理非平衡分类数据集的一些要点,并主要集中于非平衡二分类问题的处理。一如既往,我会尽量精简地叙述,在文

012

用R语言实现对不平衡数据的四种处理方法

在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性。那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测。因此,机器学习算法常常被要求应用在平衡数据集上。那我们该如何处理不平衡数据集?本文会介绍一些相关方法,它们并不复杂只是技巧性比较强。 本文会介绍处理非平衡分类数据集的一些要点,并主要集中于非平衡二分类问题的处理。一如既往,我会尽量精简地叙述,在

03
领券