首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    浅谈深度学习:如何计算模型以及中间变量的显存占用大小

    但是这篇要说的是上面这一切优化操作的基础,如何去计算我们所使用的显存。学会如何计算出来我们设计的模型以及中间变量所占显存的大小,想必知道了这一点,我们对自己显存也就会得心应手了。...然后我们说一下我们平常使用的向量所占的空间大小,以Pytorch官方的数据格式为例(所有的深度学习框架数据格式都遵循同一个标准): 我们只需要看左边的信息,在平常的训练中,我们经常使用的一般是这两种类型...也就是说,假设有一幅RGB三通道真彩色图片,长宽分别为500 x 500,数据类型为单精度浮点型,那么这张图所占的显存的大小为:500 x 500 x 3 x 4B = 3M。...还有上面右边的params,这些是神经网络的权重大小,可以看到第一层卷积是3×3,而输入图像的通道是3,输出通道是64,所以很显然,第一个卷积层权重所占的空间是 (3 x 3 x 3) x 64。...购买显存更大的显卡 从深度学习框架上面进行优化 下篇文章我会说明如何在Pytorch这个深度学习框架中跟踪显存的使用量,然后针对Pytorch这个框架进行有目的显存优化。

    3.3K80

    Tensorflow中的共享变量机制小结

    今天说一下tensorflow的变量共享机制,首先为什么会有变量共享机制? 这个还是要扯一下生成对抗网络GAN,我们知道GAN由两个网络组成,一个是生成器网络G,一个是判别器网络D。...G的任务是由输入的隐变量z生成一张图像G(z)出来,D的任务是区分G(z)和训练数据中的真实的图像(real images)。...所以这里D的输入就有2个,但是这两个输入是共享D网络的参数的,简单说,也就是权重和偏置。而TensorFlow的变量共享机制,正好可以解决这个问题。...,还有这里用的是 # get_variable定义的变量,这个和Variable # 定义变量的区别是,如果变量存在get_variable # 会获得他的值,如果不存在则创建变量 def fc_variable_scope_v2...明天要说的是用TensorFlow实现Kmeans聚类,欢迎关注~ ============End============

    2.1K30

    如何设置文件的大小

    一种方法是使用fseek到你想要的大小,然后随便写上一个什么字节。...test1.txt","w"); nRetCode = fseek(fp, 1000, SEEK_END); nRetCode = fwrite("hello", 5, 1, fp); 文件的大小会增加...第二种就是使用filemapping: Windows下先用CreateFile创建一个0字节的文件或者打开一个文件, 再用CreateFileMapping创建文件映射内核对象并传递PAGE_READWRITE...标志, 在函数的dwMaxumumSizeHigh和dwMaximumSizeLow中传递你想设置的文件大小, 系统会自动扩展该文件的大小以和你传递的参数匹配,从而使你的磁盘文件变大!...当使用FILE结构时,FILE中的_file成员就是其文件描述符。注意,这个函数内部首先将文件指针设置到文件尾,然后分配一段堆空间,将其填0后,将其写入文件,直到写到所要求的大小。

    2.6K20

    TensorFlow中常量与变量的基本操作演示

    TensorFlow中常量与变量的基本操作演示 本文将介绍TensorFlow中的基本算法运算与矩阵运算,介绍Tensorflow中常量、变量、操作符等基本运算单元概念,同时会辅助介绍会话与变量初始化等概念...谷歌使用tensorflow来命名它的深度学习框架,可以说是十分贴切的,可以分为两个单词解释tensorflow分别为tensor与flow。...上述图中我们可以看到那些圆角矩形表示变量-Var,那些椭圆表示操作-OP,此外tensorflow还经常用的常量、运行数据流图需要开启会话。...import tensorflow as tf 对于变量是多维的情况,我们一样可以计算,下面的代码就是生成两个二维变量,然后使用矩阵乘法计算结果,代码如下: import tensorflow as tfm1...中的常量、变量、会话、初始化变量等一些基本元素的基本操作,后续我们还会继续更新文章!

    1.5K80

    如何确定线程池的大小?

    通常有点年纪的程序员或许都听说这样一个说法 (其中 N 代表 CPU 的个数) CPU 密集型应用,线程池大小设置为 N + 1 IO 密集型应用,线程池大小设置为 2N 这个说法到底是不是正确的呢?...其实这是极不正确的。那为什么呢? 首先我们从反面来看,假设这个说法是成立的,那我们在一台服务器上部署多少个服务都无所谓了。因为线程池的大小只能服务器的核数有关,所以这个说法是不正确的。...那具体应该怎么设置大小呢? 假设这个应用是两者混合型的,其中任务即有 CPU 密集,也有 IO 密集型的,那么我们改怎么设置呢?是不是只能抛硬盘来决定呢? 那么我们到底该怎么设置线程池大小呢?...CPU 个数 cat /proc/cpuinfo| grep "processor"| wc -l 总结 合适的配置线程池大小其实很不容易,但是通过上述的公式和具体代码,我们就能快速、落地的算出这个线程池该设置的多大...不过最后的最后,我们还是需要通过压力测试来进行微调,只有经过压测测试的检验,我们才能最终保证的配置大小是准确的。

    2.5K10

    如何确定线程池的大小?

    通常有点年纪的程序员或许都听说这样一个说法 (其中 N 代表 CPU 的个数) CPU 密集型应用,线程池大小设置为 N + 1 IO 密集型应用,线程池大小设置为 2N 这个说法到底是不是正确的呢?...其实这是极不正确的。那为什么呢? 首先我们从反面来看,假设这个说法是成立的,那我们在一台服务器上部署多少个服务都无所谓了。因为线程池的大小只能服务器的核数有关,所以这个说法是不正确的。...那具体应该怎么设置大小呢? 假设这个应用是两者混合型的,其中任务即有 CPU 密集,也有 IO 密集型的,那么我们改怎么设置呢?是不是只能抛硬盘来决定呢? 那么我们到底该怎么设置线程池大小呢?...CPU 个数 cat /proc/cpuinfo| grep "processor"| wc -l 总结 合适的配置线程池大小其实很不容易,但是通过上述的公式和具体代码,我们就能快速、落地的算出这个线程池该设置的多大...不过最后的最后,我们还是需要通过压力测试来进行微调,只有经过压测测试的检验,我们才能最终保证的配置大小是准确的。

    1.4K30

    MongoDB 如何查看文档的大小

    如何查看文档的大小?常见是查看集合中平均文档大小,但很少查看单个文档或者特定范围文档的大小甚至查看文档中字段长度大小?...通过查看官方文档来解答如上问题,默认返回都是字节为单位(byte),以下整理自官方文档以及jira. 1、查看集合中文档的平均大小 mongos> db.tms_province_agg_result.stats...().avgObjSize; 304 2、查看集合中单个文档或者单个文档大小,只能查看单个文档 Object.bsonsize() 2.1 统计集合满足条件的单条文档的大小 --find...   {"$match":{"_id":{"$gt":2}}},    //计算每一条文档的大小    { $project: { name: "$name", object_size: { $bsonSize...db.images.aggregate([ //通过match匹配满足条件的记录 {"$match":{"_id":{"$gt":2}}}, //计算每一条文档中binary的大小

    3.6K20

    安装 tensorflow 1.1.0;以及安装其他相似版本tensorflow遇到的问题;tensorflow 1.13.2 cuda-10环境变量配置问题;Tensorflow 指定训练时如何指定

    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64 (解决使用 tensorflow 使用过程中,libcublas 库,找不到的错误...) Tensorflow 指定训练时使用的GPU: 场景:有一台服务器,服务器上有多块儿GPU可以供使用,但此时只希望使用第2块和第4块GPU,但是我们希望代码能看到的仍然是有两块GPU,分别编号为0,1...模式按照进行gpu的性能进行排序,设置此环境变量,GPU的顺序,将按照 pci_bus_id编号来进行设置;gpu顺序;这样在cuda_visble_devices环境变量就可以按照pci编号来进行选择.../guide/gpu (tensorflow 官方关于gpu使用的说明文档) https://github.com/tensorflow/docs/blob/r1.13/site/en/guide/using_gpu.md... (官方关于 tf.1.13的gpu使用文档) 设置参考自网络,如果失效,请纠正;

    70910

    解决TensorFlow中的FailedPreconditionError:未初始化的变量

    解决TensorFlow中的FailedPreconditionError:未初始化的变量 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...在本文中,我们将深入探讨并解决TensorFlow中的一个常见错误:FailedPreconditionError。这个错误通常与未初始化的变量有关。...通过这篇文章,您将学习如何识别、理解和修复这个错误。我们将提供详细的代码案例和解决方案,帮助您更好地使用TensorFlow进行深度学习开发。...引言 在使用TensorFlow进行深度学习模型开发时,FailedPreconditionError是一个常见的错误。它通常发生在尝试使用未初始化的变量时。...正文内容 什么是FailedPreconditionError FailedPreconditionError是TensorFlow中的一个异常,表明您正在尝试使用尚未初始化的变量。

    11510

    详解TensorFlow查看ckpt中变量的几种方法

    ’查看TensorFlow中checkpoint内变量的几种方法:查看ckpt中变量的方法有三种:在有model的情况下,使用tf.train.Saver进行restore使用tf.train.NewCheckpointReader...使用tools里的freeze_graph来读取ckpt注意:如果模型保存为.ckpt的文件,则使用该文件就可以查看.ckpt文件里的变量。...Saver里指定要恢复的变量 save_path = 'ckpt的路径' saver.restore(sess, save_path) # 从ckpt中恢复变量注意:基于model来读取ckpt中变量时...函数打印ckpt里的东西#使用NewCheckpointReader来读取ckpt里的变量from tensorflow.python import pywrap_tensorflowcheckpoint_path...tensor的name#上面的打印ckpt的内部使用的是pywrap_tensorflow.NewCheckpointReader所以,掌握NewCheckpointReader才是王道 3.使用tools

    5.1K10

    如何估算transformer模型的显存大小

    memory_activations是计算并存储在正向传播中的中间变量,在计算梯度时需要使用这些变量。...因为模型中梯度的数量通常等于中间变量的数量,所以memory_activations= memory_gradients。...所以最后内存就变为: memory_modal = 4*n_tr_blocks*square_of(n_head * dim) 上面的估算没有考虑到偏差所需的内存,因为这大部分是静态的,不依赖于批大小...R = n_tr_blocks = transformer层堆叠的数量 N = n_head = 注意力头数量 D = dim = 注意力头的维度 B = batch_size = 批大小 S...: M = (4 * R * N^2 * D^2) + RBNS(S) = 4*R*N^2*D^2 + RBNS^2 可以看到对于较大的序列,M与输入序列长度的平方成正比,与批大小成线性比例,这也就证明了序列长度和内存占用有很大的关系

    1.9K30

    如何增加Ubuntu上的Swap大小?

    在某些情况下,可能需要增加Ubuntu系统上的Swap大小,以提供更多的可用内存。本文将详细介绍如何在Ubuntu上增加Swap大小。...结论通过按照以上步骤,在Ubuntu上成功增加Swap大小。增加Swap大小可以提供更多的可用内存,并在系统物理内存不足时提供额外的虚拟内存空间。...可能的问题和注意事项在增加Swap大小时,请注意以下几点:选择合适的Swap大小:根据系统的需求和可用硬盘空间,选择适当的Swap大小。...一般来说,Swap的大小应该是物理内存的1到2倍,但也可以根据具体情况进行调整。确保硬盘空间足够:在创建Swap文件之前,请确保系统硬盘有足够的可用空间。Swap文件的大小将占用相应的磁盘空间。...增加Swap大小可以在系统物理内存不足时提供额外的虚拟内存空间,帮助处理内存压力。请确保根据系统需求选择适当的Swap大小,并遵循正确的配置步骤。

    2.1K00

    如何灵活的更改微服务容器运行时的堆内存大小及环境变量

    SpringBoot微服务打包容器启动运行时就会加载打包时设置的Jvm参数,当上线后监控到内存不足时需要调整参数时就要重新打包升级版本等一系列繁琐操作,那能不能只需要更改配置重启就能解决问题呢?...在手把手教你将Eureka升级Nacos注册中心一文中已经提到了如何使用Dockerfile命令来动态设置java参数。 ...logs/${project.build.finalName}-dump.hprof -jar /app/${project.build.finalName}.jar  在容器打包时设置一个变量...JAVA_OPTS,这里的变量会转化为Dockerfile中的一个环境变量,这样就可以通过改变外部的变量覆盖掉运行时内部默认的变量。  ...如在K8S管理器中设置此服务的JAVA_OPTS变量:   当然也可以通过环境变量指定微服务运行时激活的配置,如上图中的active,这里在K8S中指定为prd了,这样即使是代码中指定了dev环境在发布时也不影响正式使用

    1.7K30

    如何灵活的更改微服务容器运行时的堆内存大小及环境变量

    SpringBoot微服务打包容器启动运行时就会加载打包时设置的Jvm参数,当上线后监控到内存不足时需要调整参数时就要重新打包升级版本等一系列繁琐操作,那能不能只需要更改配置重启就能解决问题呢?...在手把手教你将Eureka升级Nacos注册中心一文中已经提到了如何使用Dockerfile命令来动态设置java参数。  ...logs/${project.build.finalName}-dump.hprof -jar /app/${project.build.finalName}.jar   在容器打包时设置一个变量...JAVA_OPTS,这里的变量会转化为Dockerfile中的一个环境变量,这样就可以通过改变外部的变量覆盖掉运行时内部默认的变量。   ...如在K8S管理器中设置此服务的JAVA_OPTS变量:    当然也可以通过环境变量指定微服务运行时激活的配置,如上图中的active,这里在K8S中指定为prd了,这样即使是代码中指定了dev环境在发布时也不影响正式使用

    1.6K20
    领券