首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何计算灯泡中两个原子之间的最小距离?

要计算灯泡中两个原子之间的最小距离,我们首先需要了解灯泡内部的气体成分及其物理状态。灯泡内部通常是真空或者充有惰性气体,如氩气。原子之间的距离取决于气体的密度和温度。

基础概念

  1. 原子间距:原子之间的距离通常用埃(Å)或纳米(nm)来衡量。
  2. 气体状态方程:理想气体状态方程 ( PV = nRT ) 可以用来描述气体的状态,其中 ( P ) 是压强,( V ) 是体积,( n ) 是气体的摩尔数,( R ) 是理想气体常数,( T ) 是绝对温度。
  3. 平均自由程:在气体中,平均自由程是指两个分子(或原子)在不发生碰撞的情况下可以行进的平均距离。

相关优势

计算原子间距可以帮助我们理解气体的物理性质,如扩散速率和热传导效率,这对于灯泡的设计和性能优化至关重要。

类型

  • 理论计算:基于气体状态方程和统计物理学的理论模型来估算原子间距。
  • 实验测量:通过光谱学或其他高精度测量技术直接测量原子间距。

应用场景

  • 灯泡设计:了解原子间距有助于设计灯泡内部的气体压力和温度,以达到最佳的光效和寿命。
  • 材料科学:在材料科学中,原子间距对于理解材料的电子结构和机械性能也很重要。

可能遇到的问题及解决方法

  • 数据不足:如果没有足够的数据来应用气体状态方程,可以尝试查找相关文献或使用经验公式。
  • 复杂气体行为:对于非理想气体,可能需要使用更复杂的方程,如范德瓦尔斯方程。
  • 测量误差:实验测量可能会受到仪器精度和环境因素的影响,需要通过多次测量和统计分析来减少误差。

解决问题的方法

假设我们有一个灯泡,内部充有氩气,我们知道其体积 ( V ),压强 ( P ),温度 ( T ),以及氩气的摩尔质量 ( M )。我们可以先计算出氩气的摩尔数 ( n ),然后使用理想气体状态方程来估算氩气的密度 ( \rho )。接着,我们可以使用平均自由程的公式来估算原子间距。

代码语言:txt
复制
# 理想气体常数 R (单位: J/(mol·K))
R = 8.31446261815324

# 氩气的摩尔质量 M (单位: kg/mol)
M = 0.040026

# 已知条件
P = 101325  # 压强 (单位: Pa)
V = 0.001   # 体积 (单位: m^3)
T = 300     # 温度 (单位: K)

# 计算摩尔数 n
n = P * V / (R * T)

# 计算密度 ρ
rho = n * M / V

# 平均自由程 λ 的估算公式 (对于氩气在室温下)
lambda_ = 1 / (rho * (2 ** 0.5))

print(f"氩气的密度为: {rho} kg/m^3")
print(f"氩原子的平均自由程为: {lambda_} m")

请注意,这只是一个简化的计算示例,实际应用中可能需要考虑更多因素,如气体的非理想行为、温度梯度等。对于更精确的计算,建议参考专业的物理和化学文献,或者使用专业的计算工具和软件。

参考链接:

  • [理想气体状态方程](https://en.wikipedia.org/wiki/ Ideal_gas_law)
  • 平均自由程
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

从灯泡振动中恢复声音的侧信道攻击

本文中介绍了Lamphone,是一种用于从台灯灯泡中恢复声音的光学侧信道攻击,在 COVID-19 疫情期间,这种灯通常用于家庭办公室。本研究展示了灯泡表面气压的波动,它响应声音而发生并导致灯泡非常轻微的振动(毫度振动),可以被窃听者利用来被动地从外部恢复语音,并使用未提供有关其应用指示的设备。通过光电传感器分析灯泡对声音的响应,并学习如何将音频信号与光信号隔离开来。本研究将 Lamphone 与其他相关方法进行了比较,结果表明,与这些方法相比Lamphone可以以高质量和更低的音量恢复声音。最后展示了窃听者可以应用Lamphone,以便在受害者坐在/工作在 35 米距离处的桌子上,该桌子上装有带灯泡的台灯时,可以恢复虚拟会议声级的语音,并且具有相当的清晰度。

04
  • NeurIPS 2021 | 通过动态图评分匹配预测分子构象

    从 2D 分子图中预测稳定的 3D 构象一直是计算化学中的一个长期挑战。而最近,机器学习方法取得了相比传统的实验和基于物理的模拟方法更优异的成绩。这些方法主要侧重于模拟分子图上相邻原子之间的局部相互作用,而忽略了非键合原子之间的长程相互作用。然而,这些未成键的原子在 3D 空间中可能彼此接近,模拟它们的相互作用对于准确确定分子构象至关重要,尤其是对于大分子和多分子复合物。在本文中,作者提出了一种称为动态图评分匹配 (DGSM) 的分子构象预测新方法,该方法通过在训练和推理过程中根据原子之间的空间接近度动态构建原子之间的图结构来对局部和远程相互作用进行建模。具体来说,DGSM根据动态构建的图,使用评分匹配方法直接估计原子坐标对数密度的梯度场。可以以端到端的方式有效地训练整个框架。多项实验表明,DGSM 的表现远超该领域一流水平,并且能够为更广泛的化学系统生成构象,例如蛋白质和多分子复合物。

    02

    ICLR 2022 under review|化学反应感知的分子表征学习

    今天给大家介绍一篇关于分子表征学习的文章。分子表征学习(MRL)旨在将分子嵌入到实向量空间中。然而,现有的基于SMILES(简化分子线性输入系统)或GNN(图神经网络)的MRL方法要么以SMILES字符串作为输入,难以编码分子的结构信息,要么过度强调GNN结构的重要性,而忽视了其泛化能力。因此,作者提出使用化学反应来协助学习分子表征,其核心思想在于保持分子在嵌入空间中的化学反应的等价性,即强制让每个化学方程式的反应物嵌入和生成物嵌入的总和相等,该限制在保持嵌入空间的有序性和提高分子嵌入的泛化能力中被证明是有效的。此外,该模型可以使用任何GNN作为分子编码器,与GNN结构无关。实验结果表明,这种方法在各种下游任务中都达到了最佳性能,超过了最佳基线方法。

    02

    J. Chem. Inf. Model. | 基于物理信息的类药物分子构象生成模型

    今天为大家介绍的是来自David C. Williams团队的一篇论文。作者提出了一种基于扩散的构象生成器模型。该模型侧重于化学键结构的再现,并从传统的经典力场中选取相关术语进行构建,以确保物理相关的表征。作者利用深度学习技术从训练集中推断原子类型和几何参数,通过利用基于扩散的生成技术的最新进展,实现构象采样。通过在大规模、多样化的类药分子合成数据集上进行训练,这些分子使用半经验的GFN2-xTB方法进行优化,达到了较高的键合参数精度,超过了传统的基于知识的方法。结果也与蛋白质数据库和剑桥结构数据库中的实验结构进行了比较。

    01

    ICML2022 | EQUIBIND:用于药物结合结构预测的几何深度学习方法

    本文介绍一篇来自于麻省理工学院的Hannes Stärk、Octavian Ganea等人发表在ICML上的分子结构预测工作——《EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction》。预测类药物分子如何和特定靶蛋白结合是药物发现中的一个核心问题。已有方法依赖于评分、排序和微调等步骤对大量候选分子进行采样,计算非常昂贵。针对该问题,作者提出一种SE(3)等变的几何深度学习模型——EQUIBIND。该模型能直接快速地预测出受体结合位置以及配体的结合姿势和朝向。此外,作者将该模型同已有的微调技巧结合取得额外突破。最后,作者提出一种新型且快速的微调模型,它对于给定的输入原子点云基于冯·米塞斯角距离全局最小值的近似形式来调整配体可旋转键的扭转角,避免以前昂贵的差分进化能源最小化策略。

    02

    Chemical Science | SDEGen:基于随机微分方程的构象生成模型

    本文介绍一篇来自浙江大学侯廷军教授、康玉副教授和碳硅智慧联合发表在Chemical Science的论文《SDEGen: Learning to Evolve Molecular Conformations from Thermodynamic Noise for Conformation Generation》。该论文提出了一种将分子力学当中的随机动力学系统和深度学习当中的概率模型相结合的小分子三维构象生成模型:SDEGen。作者采用随机微分方程(Stochastic Differential Equation, SDE)模拟分子构象从热噪声分布到热平衡分布的过程,联合概率深度学习的最新DDIM(Denoising Diffusion Implicit Models)模型,不仅提高了模型生成构象的效率,并且在多项评测任务(包括构象生成质量、原子间距离分布和构象簇的热力学性质)上实现了精度的提升。如在构象生成质量上,其多样性指标优于传统方法22%,准确性指标优于传统方法40%;在热力学性质预测方面,将传统方法的精度提升了一个数量级,与量化计算的结果误差缩小至~2kJ/mol。除此之外,这篇文章还引入了晶体构象的比对实验和势能面分布实验,为构象生成任务的评测提供了更多维及更物理的视角。大量的实验表明,SDEGen不仅可以搜索到小分子晶体构象所在的势能面的势阱当中,还可以搜索到完整势能面上多个局域优势构象。同时,SDEGen模型计算效率极高,在分子对接、药效团识别、定量构效关系等药物设计任务中具有广泛的应用前景。

    03

    电磁场与电磁波实验 01 – | 位移电流测量及电磁场与电磁波的存在实验[通俗易懂]

    随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。电场和磁场构成了统一的电磁场的两个不可分割的部分。能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。如果将另一副天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。接收天线和白炽灯构成一个完整的电磁感应装置。 当越靠近发射天线,灯泡被点的越亮。越远离天线,灯泡越暗。

    03

    【机器学习】--层次聚类从初识到应用

    聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小. 数据聚类算法可以分为结构性或者分散性,许多聚类算法在执行之前,需要指定从输入数据集中产生的分类个数。 1.分散式聚类算法,是一次性确定要产生的类别,这种算法也已应用于从下至上聚类算法。 2.结构性算法利用以前成功使用过的聚类器进行分类,而分散型算法则是一次确定所有分类。 结构性算法可以从上至下或者从下至上双向进行计算。从下至上算法从每个对象作为单独分类开始,不断融合其中相近的对象。而从上至下算法则是把所有对象作为一个整体分类,然后逐渐分小。 3.基于密度的聚类算法,是为了挖掘有任意形状特性的类别而发明的。此算法把一个类别视为数据集中大于某阈值的一个区域。DBSCAN和OPTICS是两个典型的算法。

    03

    NeurIPS 2021|分子的三维构象集的扭转几何生成

    今天给大家介绍的是NeurIPS 2021上一篇来自MIT的论文。在化学信息学和药物发现领域中,从分子图中预测分子的三维构象集具有关键的作用,但现有的生成模型存在严重的问题,这包括缺乏对重要分子几何元素的建模,优化阶段容易出现累积误差,需要基于经典力场或计算代价昂贵的方法进行结构微调。作者团队提出GEOMOL模型,一种端到端、非自回归和SE(3)不变的机器学习方法来生成低能分子三维构象的分布。利用消息传递神经网络(MPNN)捕捉局部和全局信息的能力,我们能预测局部原子的3D结构和扭转角,这样的局部预测即可用于计算训练损失,也可用于测试时的完整构象。作者团队设计了一个非对抗性的基于损失函数的最优传输来促进多样的构象生成。GEOMOL优于流行的开源、商业或最先进的ML模型,同时速度得到了显著提升。我们希望这种可微的三维结构生成器能对分子建模和相关应用产生重大影响。

    02

    arXiv | 操作符自编码器:学习编码分子图上的物理操作

    今天给大家介绍的是发表在arXiv上一项有关分子动力学内容的工作,文章标题为Operator Autoencoders: Learning Physical Operations on Encoded Molecular Graphs,作者分别是来自波特兰州立大学的Willis Hoke, 华盛顿大学的Daniel Shea以及美国兰利研究中心的Stephen Casey. 在这项工作中,作者开发了一个用于建立分子动力学模拟的时间序列体积数据图结构表示的流程。随后,作者训练了一个自编码器,以找到一个潜在空间的非线性映射。在该空间中,通过应用与自编码器串联训练的线性算子,可以预测未来的时间步长。同时,作者指出增加自编码器输出的维数可以提高物理时间步算子的精度。

    05

    CrystEngComm | 基于接触图的全局优化的晶体结构预测

    今天给大家介绍的是美国南卡罗来纳大学的Jianjun Hu等人发表在CrystEngComm上的一篇文章“Contact map based crystal structure prediction using global optimization”。目前,全局优化算法与第一性原理自由能计算相结合,以预测晶体组成或晶体结构。这些方法虽然可以在搜索过程中利用某些晶体模式,但它们却不利用晶体结构中所体现的原子构型的隐式规则和约束。在这里,作者提出了一种基于全局优化的算法,CMCrystal,基于原子接触图的对晶体结构进行重构。实验表明,给定某些晶体材料的原子接触图,重建晶体结构是可行的,但要实现其他材料的成功重建,需要更多的几何或物理化学约束。

    02

    ICLR 2022 under review | 从零开始生成三维分子几何结构的自回归流模型

    今天给大家介绍的是ICLR2022上underreview的文章《An autoregressive flow model for 3d molecular geometry generation from scratch》。虽然目前已经开发了多种方法来生成分子图,但从零开始生成分子的三维几何结构问题并没有得到充分的探索。在这项工作中,作者提出了G-SphreNet,一种生成三维分子几何的自回归流模型。G-SphereNet采用了一种一步步将原子放置在三维空间上灵活的顺序生成方案,它并不直接生成三维坐标,而是通过生成距离、角度和扭转角来确定原子的三维位置,从而确保不变性和等变性。此外,作者建议使用球形信息传递和注意力机制进行条件信息提取。实验结果表明,G-SphreNet在随机分子几何结构生成和目标分子发现任务方面优于以往的方法。

    02

    Nat. Mach. Intell. | 用于预测分子结合构象的几何深度学习方法

    今天给大家介绍来自杨森制药Generative AI Team的Jörg Kurt Wegner等人以及来自英国伦敦帝国理工学院化学工程系CPSE的Ehecatl Antonio del Rio-Chanona共同发表在nature machine intellgence上的一篇文章《A geometric deep learning approach to predict binding conformations of bioactive molecules》。分子优化的关键在于理解配体和靶蛋白之间的相互作用。作者提出了一种能够预测配体和靶蛋白结合构象的几何深度学习方法。具体的,该模型能够学习每一个配体-靶体对的基于距离似然的statical potential。这种potential能够结合全局优化算法重新构建出配体的实验性结合构象。作者提出,同已有的用于对接和筛选任务中的评分函数相比,这种基于距离似然的potential有类似或者更好的效果。

    04

    AlphaFold3及其与AlphaFold2相比的改进

    蛋白质结构预测是生物化学中最重要的挑战之一。高精度的蛋白质结构对于药物发现至关重要。蛋白质结构预测始于20世纪50年代,随着计算方法和对蛋白质结构的认识不断增长。最初主要采用基于物理的方法和理论模型。当时的计算能力有限,这些模型往往难以成功地预测大多数蛋白质的结构。蛋白质结构模型的下一个发展阶段是同源建模,出现在20世纪70年代。这些模型依赖于同源序列具有相似结构的原理。通过将目标序列与已知结构的模板序列进行多序列比对,首次成功地确定了以前未解决的序列的结构。然而,这些模型的分辨率仍然有限。20世纪80年代出现了从头开始的方法,带来了下一个分辨率提升。这些方法应用了基于物理的技术和优化算法。结合计算技术的进步,这导致了蛋白质结构预测的显著改进。为了对所有这些新方法进行基准测试,从90年代初开始了蛋白质结构预测技术评估的关键阶段(CASP)系列活动。近年来,机器学习和深度学习技术已经越来越多地集成到蛋白质结构预测方法中,尤其是自2007年以来使用长短期记忆(LSTM)以来。

    01

    Nucleic Acids Res. | GPSFun:使用语言模型的几何感知蛋白序列功能预测

    今天为大家介绍的是来自中山大学杨跃东团队的一篇论文。了解蛋白质功能对于阐明疾病机制和发现新药靶点至关重要。然而,蛋白质序列的指数增长与其有限的功能注释之间的差距正在扩大。在之前的研究中,作者开发了一系列方法,包括GraphPPIS、GraphSite、LMetalSite和SPROF-GO,用于蛋白质残基或蛋白质水平的功能注释。为了进一步提高这些方法的适用性和性能,作者现推出GPSFun,这是一款用于几何感知蛋白质序列功能注释的多功能网络服务器,结合了语言模型和几何深度学习以提升以往工具的性能。具体而言,GPSFun利用大型语言模型高效预测输入蛋白质序列的3D构象,并提取有用的序列嵌入。随后,几何图神经网络被用来捕捉蛋白质图中的序列和结构模式,从而促进各种下游预测,包括蛋白质-配体结合位点、基因本体论(gene ontologies)、亚细胞位置(subcellular locations)和蛋白质溶解度(protein solubility)。值得注意的是,GPSFun在各种任务中均表现优于最新的前沿方法,不需要多序列比对或实验蛋白质结构。GPSFun对所有用户免费开放,并提供用户友好的界面和丰富的可视化功能,网址为https://bio-web1.nscc-gz.cn/app/GPSFun。

    01
    领券