首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引行、列的索引位置[index, columns]来寻找值 (1)读取第二行的值 # 读取第二行的值,与loc方法一样 data1...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    9.9K21

    对比Excel,Python pandas删除数据框架中的行

    标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6

    4.6K20

    【说站】Python Pandas数据框如何选择行

    Python Pandas数据框如何选择行 说明 1、布尔索引( df[df['col'] == value] ) 2、位置索引( df.iloc[...]) 3、标签索引( df.xs(...))...假设我们的标准是 column 'A'=='foo' (关于性能的注意事项:对于每个基本类型,我们可以通过使用 Pandas API 来保持简单,或者我们可以在 API 之外冒险,通常进入 NumPy,...设置 我们需要做的第一件事是确定一个条件,该条件将作为我们选择行的标准。我们将从 OP 的案例开始column_name == some_value,并包括一些其他常见用例。...借用@unutbu: import pandas as pd, numpy as np df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'...数据框选择行的方法,希望对大家有所帮助。

    1.5K40

    Python中如何顺序迭代多个列表

    通常,你可能需要处理多个列表或列表列表并按顺序逐个迭代它们。有几种简单的方法可以做到这一点。在本文中,我们将学习如何按顺序遍历多个 Python 列表。...以下是使用该函数迭代列表 L1、L2 和 L3 的示例chain()。...这是因为迭代器每次只返回一个项,而不是像 for 循环那样将整个可迭代项的副本存储在内存中。...在本例中,输出是每个列表的第一项(1,4,7),后跟每个列表的第二项(2,5, ),依此类推。这与第一个列表项( ,,)后跟第二个列表项(,,),依此类推8的顺序不同。...123456 unsetunset最后unsetunset 在本文中,我们学习了在 Python 中顺序迭代多个列表的几种简单方法。基本上,有两种方法可以做到这一点。

    14500

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...语法类似,但我们将字符串列表传递到方括号中。请注意双方括号: dataframe[[列名1,列名2,列名3,…]] 图6 使用pandas获取行 可以使用.loc[]获取行。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。

    19.2K60

    如何控制Ansible Playbook的执行顺序、运行选定的剧本资源

    写在前面 分享一些Ansible中Playbook执行顺序控制的手段以及运行选定的任务的笔记 不知道小伙伴们有么有遇到这样的情况 一些运维场景,Github中找了很棒的剧本或者角色,但是只需要其中的一部分...include_tasks加载的所有任务都与此标签关联。 角色,角色中的所有任务都与此标签关联。 任务块,块中的所有任务都与此标签关联。 看一个Demo,上面的标记依次来看体验下。...,但是我的标签太多了,都写上很麻烦,况且我还有一些没有打标签的任务,我应该如何处理,Ansible在这些场景中提供了一些指令参数。...Be sure to remove the '[]' above, # if you add dependencies to this list. $ 所以不管剧本编写顺序如何,同一剧本中执行顺序为...和 tasks 部分中通知的处理程序 handlers post_tasks post_tasks 部分中通知的处理程序 handlers 这些部分在 Play 中的编写顺序不会修改以上列出的执行顺序

    2.7K10

    如何修复TensorFlow中的OutOfRangeError:迭代器数据耗尽

    如何修复TensorFlow中的OutOfRangeError:迭代器数据耗尽 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...让我们一起探讨如何高效处理TensorFlow中的数据迭代! 引言 在使用TensorFlow进行模型训练和评估时,数据迭代器是一个重要的组成部分。...代码示例与解决方案 示例代码 以下是一个简单的TensorFlow数据迭代示例,演示如何处理OutOfRangeError: import tensorflow as tf # 创建一个简单的数据集...小结 通过本文的介绍,我们详细探讨了TensorFlow中OutOfRangeError的产生原因及解决方案。希望这些方法能帮助你在模型训练过程中更好地处理数据迭代问题,确保训练过程的顺利进行。...高效迭代处理,推荐使用的方法 未来展望 在未来的工作中,我们将继续探索和解决TensorFlow及其他机器学习框架中的常见错误和优化方法。

    8410

    pandas基础:idxmax方法,如何在数据框架中基于条件获取第一行

    标签:pandas idxmax()方法可以使一些操作变得非常简单。例如,基于条件获取数据框架中的第一行。本文介绍如何使用idxmax方法。...什么是pandasidxmax idxmax()方法返回轴上最大值第一次出现的索引。 例如,有4名ID为0,1,2,3的学生的测试分数,由数据框架索引表示。...默认情况下,axis=0: 学生3的Math测试分数最高 学生0的English测试分数最高 学生3的CS测试分数最高 图2 还可以设置axis=1,以找到每个学生得分最高的科目。...图3 基于条件在数据框架中获取第一行 现在我们知道了,idxmax返回数据框架最大值第一次出现的索引。那么,我们可以使用此功能根据特定条件帮助查找数据框架中的第一行。...例如,假设有SPY股票连续6天的股价,我们希望找到在股价超过400美元时的第一行/日期。 图4 让我们按步骤进行分解,首先对价格进行“筛选”,检查价格是否大于400。此操作的结果是布尔索引。

    8.6K20

    Pandas中如何统计各个销售地出线的次数?

    一、前言 前几天在Python最强王者交流群【wen】问了一个Pandas数据处理的问题,一起来看看吧。...他的代码如下: import pandas as pd results = [] df = pd.read_excel('G:\合并结果+2023-09-22.xlsx',dtype=str).convert_dtypes...: 二、实现过程 这里【莫生气】给了一个思路,如下所示: 直接df['销售地'].value_counts(ascending=True)或者使用【哎呦喂 是豆子~】提出的df.groupby(by...= '销售地').count() 都是可以得到预期的结果的: 后来【巭孬】也给了一个代码,如下所示: # 读取 Excel 文件 df = pd.read_excel('G:\合并结果+2023-09...这篇文章主要盘点了一个Python数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    14830
    领券