首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

删除重复值,不只Excel,Python pandas更行

标签:Python与Excel,pandas 在Excel中,我们可以通过单击功能区“数据”选项卡上的“删除重复项”按钮“轻松”删除表中的重复项。确实很容易!...第3行和第4行包含相同的用户名,但国家和城市不同。 删除重复值 根据你试图实现的目标,我们可以使用不同的方法删除重复项。最常见的两种情况是:从整个表中删除重复项或从列中查找唯一值。...此方法包含以下参数: subset:引用列标题,如果只考虑特定列以查找重复值,则使用此方法,默认为所有列。 keep:保留哪些重复值。’...图4 这一次,我们输入了一个列名“用户姓名”,并告诉pandas保留最后一个的重复值。现在pandas将在“用户姓名”列中检查重复项,并相应地删除它们。...我们的列(或pandas Series)包含两个重复值,”Mary Jane”和”Jean Grey”。通过将该列转换为一个集,我们可以有效地删除重复项!

6.1K30

【数据处理包Pandas】数据载入与预处理

中缺失值的表示 Pandas 表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用 Python 中的None,Pandas 会自动把None转变成NaN。...isnull():判断每个元素是否是缺失值,会返回一个与原对象尺寸相同的布尔性 Pandas 对象 notnull():与isnull()相反 dropna():返回一个删除缺失值后的数据对象 fillna...2 在缺失值的处理方法中,删除缺失值是常用的方法之一。...# 除第一个重复项外,其他重复项均标记为True df2.duplicated('style') Pandas 通过drop_duplicates删除重复的行,格式为: DataFrame.drop_duplicates...默认为 False,表示保留原索引;如果设为 True,则在删除重复值后重新设置索引。

11810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据导入与预处理-课程总结-04~06章

    2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...keep:表示采用哪种方式保留重复项,该参数可以取值为’first’(默认值)、 'last '和 ‘False’,其中’first’代表删除重复项,仅保留第一次出现的数据项;'last '代表删除重复项...,仅保留最后一次出现的数据项;'False’表示所有相同的数据都被标记为重复项。...2.3.2 重复值的处理 重复值的一般处理方式是删除,pandas中使用drop_duplicates()方法删除重复值。...,该参数可以取值为’first’(默认值)、 'last ‘和’False’,其中’first’代表删除重复项,仅保留第一次出现的数据项;'last '代表删除重复项,仅保留最后一次出现的数据项;'False

    13.1K10

    使用 Python 进行数据清洗的完整指南

    例如: NA值仅在数据集的尾部或中间出现。这意味着在数据收集过程中可能存在技术问题。可能需要分析该特定样本序列的数据收集过程,并尝试找出问题的根源。 如果列NA数量超过 70–80%,可以删除该列。...如果 NA 值在表单中作为可选问题的列中,则该列可以被额外的编码为用户回答(1)或未回答(0)。...重复数据 当数据集中有相同的行时就会产生重复数据问题。这可能是由于数据组合错误(来自多个来源的同一行),或者重复的操作(用户可能会提交他或她的答案两次)等引起的。处理该问题的理想方法是删除复制行。...可以使用 pandas duplicated 函数查看重复的数据: df.loc[df.duplicated()] 在识别出重复的数据后可以使用pandas 的 drop_duplicate 函数将其删除...数值列中有 NA,采用均值法估算。在 split 前完成时,使用整个数据集的均值,但如果在 split 后完成,则使用分别训练和测试的均值。

    1.2K30

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    dropna()和fillna()方法1.1.2.1 dropna()删除含有空值或缺失值的行或列1.1.2.2 fillna()方法可以实现填充空值或者缺失值    1.2 重复值的处理1.2.1...keep:删除重复项并保留第一次出现的项取值可以为 first、last或 False  ​ duplicated()方法用于标记 Pandas对象的数据是否重复,重复则标记为True,不重复则标记为False...,所以该方法返回一个由布尔值组成的Series对象,它的行索引保持不变,数据则变为标记的布尔值  强调注意:  ​ (1)只有数据表中两个条目间所有列的内容都相等时,duplicated()方法才会判断为重复值...(2)duplicated()方法支持从前向后( first)和从后向前(last)两种重复值查找模式,默认是从前向后查找判断重复值的。换句话说,就是将后出现的相同条目判断为重复值。 ...dropna:表示是否将旋转后的缺失值删除,若设为True,则表示自动过滤缺失值,设置为 False则相反。

    5.5K00

    Python进阶之Pandas入门(三) 最重要的数据流操作

    在这里,我们可以看到每一列的名称、索引和每行中的值示例。 您将注意到,DataFrame中的索引是Title列,您可以通过单词Title比其他列稍微低一些的方式看出这一点。...、非空值的数量、每个列中的数据类型以及DataFrame使用了多少内存。...在本例中,将DataFrames分配给相同的变量有点冗长。因此,pandas的许多方法上都有inplace关键参数。...drop_duplicates()的另一个重要参数是keep,它有三个可能的选项: first:(默认)删除第一次出现的重复项。 last:删除最后一次出现的重复项。 False:删除所有重复项。...另一方面,keep将删除所有重复项。如果两行是相同的,那么这两行都将被删除。

    2.7K20

    我用Python展示Excel中常用的20个操

    Pandas 在pandas中删除数据也很简单,比如删除最后一列使用del df['new_col']即可 ?...Pandas 在pandas中可以使用data.isnull().sum()来检查缺失值,之后可以使用多种方法来填充或者删除缺失值,比如我们可以使用df = df.fillna(axis=0,method...数据去重 说明:对重复值按照指定要求处理 Excel 在Excel中可以通过点击数据—>删除重复值按钮并选择需要去重的列即可,例如对示例数据按照创建时间列进行去重,可以发现去掉了196 个重复值,保留了...数据交换 说明:交换指定数据 Excel 在Excel中交换数据是很常用的操作,以交换示例数据中地址与岗位两列为例,可以选中地址列,按住shift键并拖动边缘至下一列松开即可 ?...Pandas 在pandas中交换两列也有很多方法,以交换示例数据中地址与岗位两列为例,可以通过修改列号来实现 ?

    5.6K10

    数据专家最常使用的 10 大类 Pandas 函数 ⛵

    图片 5.处理重复我们手上的数据集很可能存在重复记录,某些数据意外两次输入到数据源中,清洗数据时删除重复项很重要。...以下函数很常用:duplicated: 识别DataFrame中是否有重复,可以指定使用哪些列来标识重复项。drop_duplicates:从 DataFrame 中删除重复项。...一般建议大家先使用 duplicated检查重复项,确定业务上需要删除重复项,再使用这个函数。图片 6.处理缺失值现实数据集中基本都会存在缺失值的情况,下面这些函数常被用作检查和处理缺失值。...注意:重要参数index(唯一标识符), columns(列成为值列),和 values(具有值的列)。...重要的参数包括 on(连接字段),how(例如内连接或左连接,或外连接),以及 suffixes(相同字段合并后的后缀)。concat:沿行或列拼接DataFrame对象。

    3.6K21

    数据导入与预处理-第5章-数据清理

    删除缺失值:删除缺失值是最简单的处理方式,这种方式通过直接删除包含缺失值的行或列来达到目的,适用于删除缺失值后产生较小偏差的样本数据,但并不是十分有效。...1.3 什么是重复值 重复值是指样本数据中某个或某些数据记录完全相同,主要是由于人工录入、机械故障导致部分数据重复录入。...2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...keep:表示采用哪种方式保留重复项,该参数可以取值为’first’(默认值)、 'last '和 ‘False’,其中’first’代表删除重复项,仅保留第一次出现的数据项;'last '代表删除重复项...,仅保留最后一次出现的数据项;'False’表示所有相同的数据都被标记为重复项。

    4.5K20

    python数据科学系列:pandas入门详细教程

    、向前/向后填充等,也可通过inplace参数确定是否本地更改 删除空值,dropna,删除存在空值的整行或整列,可通过axis设置,也包括inplace参数 重复值 检测重复值,duplicated,...检测各行是否重复,返回一个行索引的bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复的多行时,首行被认为是合法的而可以保留 删除重复值,drop_duplicates...,按行检测并删除重复的记录,也可通过keep参数设置保留项。...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持...count、value_counts,前者既适用于series也适用于dataframe,用于按列统计个数,实现忽略空值后的计数;而value_counts则仅适用于series,执行分组统计,并默认按频数高低执行降序排列

    15K20

    python数据处理 tips

    在本文中,我将分享一些Python函数,它们可以帮助我们进行数据清理,特别是在以下方面: 删除未使用的列 删除重复项 数据映射 处理空数据 入门 我们将在这个项目中使用pandas,让我们安装包。...删除重复项 让我们使用此函数检查此数据集中的重复项。 df[df.duplicated(keep=False)] ? keep允许一些参数检查重复项。...在本例中,我希望显示所有的重复项,因此传递False作为参数。现在我们已经看到这个数据集中存在重复项,我想删除它们并保留第一个出现项。下面的函数用于保留第一个引用。...注意:请确保映射中包含默认值male和female,否则在执行映射后它将变为nan。 处理空数据 ? 此列中缺少3个值:-、na和NaN。pandas不承认-和na为空。...在该方法中,如果缺少任何单个值,则整个记录将从分析中排除。 如果我们确信这个特征(列)不能提供有用的信息或者缺少值的百分比很高,我们可以删除整个列。

    4.4K30

    软件测试|数据处理神器pandas教程(十一)

    keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表示删除所有重复项...inplace:布尔值参数,默认为 False 表示删除重复项后返回一个副本,若为 Ture 则表示直接在原数据上删除重复项。...方法应用 首先创建一个包含有重复值的 DataFrame 对象,如下所示: import pandas as pd data={ 'A':[1,0,1,1], 'B':[0,2,5,0...'B'],keep=False) print(df1) ----------------- 输出结果如下: A B C D 1 3 1 5 3 2 3 2 4 3 从上述示例可以看出,删除重复项后...Pandas 提供的 reset_index() 函数会直接使用重置后的索引。

    53520

    Python 数据处理:Pandas库的使用

    关键字del用于删除列。...,返回True is_unique 当Index没有重复值时,返回True unique 计算Ilndex中唯一值的数组 ---- 2.基本功能 2.1 重新索引 Pandas对象的一个重要方法是reindex...1,而不是组中相同的元素数 ---- 2.11 带有重复标签的轴索引 直到目前为止,所介绍的所有范例都有着唯一的轴标签(索引值)。...如果某个索引对应多个值,则返回一个Series;而对应单个值的,则返回一个标量值: print(obj['a']) print(obj['c']) 这样会使代码变复杂,因为索引的输出类型会根据标签是否有重复发生变化...无论如何,在计算相关系数之前,所有的数据项都会按标签对齐。 ---- 3.2 唯一值、值计数以及成员资格 还有一类方法可以从一维Series的值中抽取信息。

    22.8K10

    Pandas入门教程

    =True) # 使用0填充缺失值 df 删除缺失值 data.dropna(how = 'all') # 传入这个参数后将只丢弃全为缺失值的那些行 结果如下: 当然还有其他情况: data.dropna...']=df['A'].map(str.stri()) 大小写转换 df['A'] = df['A'].str.lower() 3.3 重复值处理 删除后面出现的重复值 df['A'] = df['A']....drop_duplicates() # 某一列后出现重复数据被清除 删除先出现的重复值 df['A'] = df['A'].drop_duplicates(keep=last) # # 某一列先出现重复数据被清除...如果传递了 dict,排序后的键将用作keys参数,除非传递,在这种情况下将选择值(见下文)。任何 None 对象都将被静默删除,除非它们都是 None 在这种情况下将引发 ValueError 。...verify_integrity: 布尔值,默认为 False。检查新的串联轴是否包含重复项。相对于实际的数据串联,这可能非常昂贵。 copy: 布尔值,默认为真。

    1.1K30

    pandas 重复数据处理大全(附代码)

    继续更新pandas数据清洗,上一篇说到缺失值的处理。 链接:pandas 缺失数据处理大全(附代码) 感兴趣可以关注这个话题pandas数据清洗,第一时间看到更新。...比如按照姓名进行查重subset=['name'],那么具有相同名字的人就只会保留一个,但很可能只是重名的原因,而并非真正同一个人,所以可以按照姓名和出生日期两列查重,subset=['name','birthday...通过两个参数的设置就可以查看自己想要的重复值了,以此判断要删除哪个,保留哪个。 删除重复值 当确定好需要删除的重复值后,就进行进行删除的操作了。 删除重复值会用到drop_duplicates函数。...默认为False,是否直接在原数据上删除重复项或删除重复项后返回副本。...如果我们随机地删除重复行,没有明确的逻辑,那么对于这种随机性线上是无法复现的,即无法保证清洗后的数据一致性。 所以我们在删除重复行前,可以把重复判断字段进行排序处理。

    2.5K20

    python数据分析——数据预处理

    how:可选参数,默认为’any’,表示只要有一个缺失值就删除该行或列;若设为’all’,则只有全部为缺失值时才删除该行或列。...可以传入一个或多个列的名称或索引。如果指定了subset参数,那么只有在指定的列中的值相同的行才会被判断为重复。 keep:可选参数,用于指定保留哪些重复值。...axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。与labels参数功能相同,只是在不指定axis的情况下使用。...如果同时指定了labels和index,则labels参数优先生效。 columns:要删除的列的标签列表或单个标签。与labels参数功能相同,只是在axis=1的情况下使用。...如果同时指定了labels和index,则labels参数优先生效。 columns:要删除的列的标签列表或单个标签。与labels参数功能相同,只是在axis=1的情况下使用。

    7910
    领券