约定: import pandas as pd import numpy as np from numpy import nan as NaN 填充缺失数据 fillna()是最主要的处理方式了。...inplace=True) df1 代码结果: 0 1 2 0 1.0 2.0 3.0 1 0.0 0.0 2.0 2 0.0 0.0 0.0 3 8.0 8.0 0.0 传入method=” “改变插值方式...1.0 1 4 7 0 NaN 5.0 2 6 5 5 NaN NaN 3 1 9 9 NaN NaN 4 4 8 1 5.0 9.0 df2.fillna(method='ffill')#用前面的值来填充
df.dropna()函数用于删除dataframe数据中的缺失数据,即 删除NaN数据....‘any’, ‘all’}, default ‘any’,any:删除带有nan的行;all:删除全为nan的行 thresh int,保留至少 int 个非nan行 subset list,在特定列缺失值处理...NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT 只保留至少2个非NA值的行...toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT 从特定列中查找缺少的值:
面对缺失值三种处理方法: option 1: 去掉含有缺失值的样本(行) option 2:将含有缺失值的列(特征向量)去掉 option 3:将缺失值用某些值填充(0,平均值,中值等) 对于dropna...axis=1: 删除包含缺失值的列 how: 与axis配合使用 how=‘any’ :只要有缺失值出现,就删除该行货列 how=‘all’: 所有的值都缺失,才删除行或列 thresh: axis...中至少有thresh个非缺失值,否则删除 比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行 subset: list 在哪些列中查看是否有缺失值 inplace...method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None 在列上操作 ffill / pad: 使用前一个值来填充缺失值...backfill / bfill :使用后一个值来填充缺失值 limit 填充的缺失值个数限制。
nan_model=Imputer(missing_values='NaN',strategy='mean',axis=0) #建立替换规则:将值为NaN的缺失值以均值做替换 nan_result=nan_model.fit_transform...nan_result_pd1 = df.fillna(method='backfill') #用后面的值替换缺失值 print(nan_result_pd1) col1 col2...5 1.002177 0.448844 -0.584634 -1.038151 nan_result_pd2 = df.fillna(method='bfill',limit=1) #用后面的值替换缺失值...0.459114 -1.038151 5 1.002177 0.448844 -0.584634 -1.038151 nan_result_df3=df.fillna(method='pad') #用前面的值替换缺失值...0.000000 5 1.002177 0.448844 -0.584634 -1.038151 nan_result_df5=df.fillna({'col2':1.1,'col4':1.2}) #用不同值替换不同列的缺失值
p=8287 介绍 缺失值被认为是预测建模的首要障碍。因此,掌握克服这些问题的方法很重要。 估算缺失值的方法的选择在很大程度上影响了模型的预测能力。...如果X1缺少值,那么它将在其他变量X2到Xk上回归。然后,将X1中的缺失值替换为获得的预测值。同样,如果X2缺少值,则X1,X3至Xk变量将在预测模型中用作自变量。稍后,缺失值将被替换为预测值。...默认情况下,线性回归用于预测连续缺失值。Logistic回归用于分类缺失值。一旦完成此循环,就会生成多个数据集。这些数据集仅在估算的缺失值上有所不同。...有98个观测值,没有缺失值。Sepal.Length中有10个观测值缺失的观测值。同样,Sepal.Width等还有13个缺失值。 我们还可以创建代表缺失值的视觉效果。 ...然后,将 加性模型(非参数回归方法)拟合到从原始数据中进行替换得到的样本上,并使用非缺失值(独立变量)预测缺失值(充当独立变量)。 然后,它使用预测均值匹配(默认)来插补缺失值。
1、重复值处理 把数据结构中,行相同的数据只保留一行。...函数语法: drop_duplicates() 删除重复值newdf=df.drop_duplicates() from pandas import read_csv df = read_csv('D...把重复数据提取出来 df[dIndex] #直接删除重复值 #默认根据所有的列,进行删除 newDF = df.drop_duplicates() #当然也可以指定某一列,进行重复值处理 newDF...= df.drop_duplicates('id') 2、缺失值处理 dropna函数作用:去除数据结构中值为空的数据。...'value']].any(axis=1)] df.fillna('未知') #直接删除空值 newDF = df.dropna() 3、空格值处理 strip函数作用:清除字符型数据左右的空格。
值得注意的是,这里所说的缺失值,不仅包括数据库中的NULL值,也包括用于表示数值缺失的特殊数值(比如,在系统中用-999来表示数值不存在)。...(例如根据其它变量对记录进行数据分箱,然后选择该记录所在分箱的相应变量的均值或中位数,来填充缺失值,效果会更好一些) 造成数据缺失的原因 在各种实用的数据库中,属性值缺失的情况经常发全甚至是不可避免的。...将数据集中不含缺失值的变量(属性)称为完全变量,数据集中含有缺失值的变量称为不完全变量,Little 和 Rubin定义了以下三种不同的数据缺失机制: 1)完全随机缺失(Missing Completely...从缺失值的所属属性上讲,如果所有的缺失值都是同一属性,那么这种缺失成为单值缺失,如果缺失值属于不同的属性,称为任意缺失。另外对于时间序列类的数据,可能存在随着时间的缺失,这种缺失称为单调缺失。...假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。
关于缺失值还有一个函数:complete.cases函数 该函数与is.na的区别在于: 1、输出数据格式不同。...complete.cases输出的逻辑向量与is.na正好相反,is.na的TURE为是缺失值;complete.cases的TURE为完整值。...#多维数列,按行,na.rm为是否需要忽略缺失值,na.rm=T表示忽略,删除 #数据框中的缺失值操作 #数据框中的缺失值操作 y 缺失值...: 关于缺失值的检测应该包括:缺失值数量、缺失值比例、缺失值与完整值数据筛选。...complete.cases(saledata)) #1/201数字,缺失值比例 saledata[!complete.cases(saledata),] #筛选出缺失值的数值
运行结果可知,0表示变量列中有缺失值,1表示变量列中缺失值,第一行表示无缺失值,第二行表示除了span之外无缺失值,第一列表示各个缺失值模式实例个数,最后一列表示各模式中有缺失值的变量个数。...可看到,sleep数据集有42例没有缺失值,仅2个实例缺失span,9个实例同时缺失NanD和Dream,数据集总共包含42x0+2x1+.....1x3=38个缺失值 aggr()函数不仅仅绘制每个变量的缺失值数...左边的图可知缺失值数量,NonD有最大的缺失值数14个,右边的图显示有2个哺乳动物缺失NonD、Dream、Sleep评分。42个动物没有缺失值。...四个红点代表缺失了Gest得分的Dream值。在底部边界上,可以看到,妊娠期和做梦时长呈现负相关,缺失妊娠期数据时动物的做梦时长一般更长。...两个变量均有缺失值的观测个数在两边界交叉处 (左下角 )蓝色标出。
1、随机缺失(MAR):随机缺失意味着数据点缺失的倾向与缺失的数据无关,而是与一些观察到的数据相关 2、完全随机缺失(MCAR):某个值缺失的事实与它的假设值以及其他变量的值无关 3、非随机缺失(MNAR...):两个可能的原因是,缺失值取决于假设的值(例如,高薪人群通常不想在调查中透露他们的收入)或缺失值依赖于其他变量的值(例如假设女性一般不愿透露他们的年龄!...此处年龄变量缺失值受性别变量影响) 在前两种情况下,根据数据的出现情况删除缺失值的数据是安全的,而在第三种情况下,删除缺失值的观察值会在模型中产生偏差。所以在移除观测结果之前,我们必须非常小心。...使用具有预测变量完整数据的情况来生成回归方程;然后使用该方程来预测不完整情况下的缺失值。在迭代过程中,插入缺失变量的值,然后使用所有情况预测因变量。...我们可以为缺失的值创建另一个类别,并将它们用作不同的级别。这是最简单的方法。 3、预测模型:在这里,我们创建一个预测模型来估计将替代缺失数据的值。
大部分统计方法都假定处理的是完整向量、矩阵、数据框,但是在大多数情况下,在处理真实数据之前 不得不消除缺失值数据:(1)删除含有缺失值的实例;(2)用合理的值替代缺失值。...生物学变量包含物种被捕食的程度(Pred)、睡眠时暴露的程度 (Exp)和面临的总危险程度(Danger) 处理缺失值的方法: ?...R语言中使用NA代表缺失值,NaN(不是一个数)代表不可能的值,符号Inf和-Inf代表正无穷和负无穷,函数is.na、is.nan()和is.infinite()分别识别缺失值、不可能值和无穷值,返回结果是...complete.cases(sleep))#数据集中32%实例有一个或多个缺失值 [1] 0.3225806 对于缺失值,必须牢记complete.cases()函数仅NA和NAN缺失值识别,Inf...和-Inf无穷值呗当作有效值;必须使用缺失值函数来识别数据对象中缺失值,比如mydata==NA的逻辑是无法实现的
处理缺失值选择处理缺失值的方法Pandas的缺失值处理缺失值 《Python数据科学手册》读书笔记 处理缺失值 缺失值主要有三种形式:null、 NaN 或 NA。...选择处理缺失值的方法 在数据表或 DataFrame 中有很多识别缺失值的方法。...Pandas的缺失值 Pandas 用标签方法表示缺失值,包括两种 Python 原有的缺失值: 浮点数据类型的 NaN 值 Python的 None 对象。...None:Python对象类型的缺失值 Pandas 可以使用的第一种缺失值标签是 None, 它是一个 Python 单体对象, 经常在代码中表示缺失值。...剔除缺失值 除了前面介绍的掩码方法, 还有两种很好用的缺失值处理方法, 分别是 dropna()(剔除缺失值) 和 fillna()(填充缺失值) 。
公式模型必须处理缺失值 构建评分模型过程中,建模属于流程性的过程,耗时不多,耗费大量精力的点在于缺失值的填充。缺失值填充的合理性直接决定了评分模型的成败。...公式模型必须处理缺失值,如果不进行处理,则缺失值对应的该条观测会被排除在建模样本之外,如回归模型、神经网络等都需要进行缺失值的处理。...算法模型对缺失值比较稳健,这类模型会将缺失值单独划分为一类,但算法模型对缺失值的宽容也带来了模型稳定性弱的弊端,如决策树。 ?...缺失值的填补我通常会遵循这样的原则: 通常如果缺失值比例超过80%则放弃填补,但在实际工作中,缺失比例超过50%基本上我就会放弃补缺; 如果变量缺失很高但基于业务含义上的重要性无法舍弃,那么就需要针对这个变量生成一个指示哑变量...均值插补法->简单但没有吸引力 均值插补是最简单但缺乏吸引力的插补方法,做法是用样本所有观测数据的均值去替代所有的缺失值,这种方法只能在缺失值为完全随机缺失时才能够为总体均值或总量提供无偏估计。
将其Nan全部填充为0,这时再打印的话会发现根本未填充,这是因为没有加上参数inplace参数。
缺失值的基本概念在数据集中,缺失值通常表示某些数据点没有被记录。这些缺失值可能是由于数据收集过程中的错误、设备故障或其他原因导致的。...在Pandas中,缺失值通常用NaN(Not a Number)表示。2. 检测缺失值在处理缺失值之前,首先需要检测数据集中哪些位置存在缺失值。...处理缺失值的方法3.1 删除缺失值删除缺失值是最直接的方法,可以通过以下两种方式实现:dropna():删除包含缺失值的行或列。- `axis=0`:删除包含缺失值的行(默认)。...- `axis=1`:删除包含缺失值的列。- `how='any'`:只要有一个缺失值就删除(默认)。- `how='all'`:只有当所有值都是缺失值时才删除。...总结本文介绍了Pandas中处理缺失值的基本方法,包括检测缺失值、删除缺失值、填充缺失值和插值法填充缺失值。同时,我们还讨论了在处理缺失值时可能遇到的一些常见问题及其解决方案。
1、R中重复值的处理 unique函数作用:把数据结构中,行相同的数据去除。...:unique,用于清洗数据中的重复值。...2、R中缺失值的处理 缺失值的产生 ①有些信息暂时无法获取 ②有些信息被遗漏或者错误处理了 缺失值的处理方式 ①数据补齐(例如用平均值填充) ②删除对应缺失值(如果数据量少的时候慎用) ③不处理 na.omit...函数作用:去除数据结构中值为NA的数据 #缺失数据清洗 #读取数据 data <- read.csv('1.csv', fileEncoding = "UTF-8"); #清洗空数据 new_data...<- na.omit(data) 3、R中空格值的处理 trim函数的作用:用于清除字符型数据前后的空格。
缺失值处理 缺失值首先需要根据实际情况定义 可以采取直接删除法 有时候需要使用替换法或者插值法 常用的替换法有均值替换、前向、后向替换和常数替换 import pandas as pd import numpy...> 26.0 3 rows × 22 columns # how = 'all', 只有当前行都是缺失值才删除...# how = 'any', 只要当前行有一个缺失值就删除 df.dropna(how = 'any', axis=0) .dataframe tbody tr...columns # subset 根据指定字段判断 # df.dropna(how='any', subset=['Condition', 'Price', 'Mileage']) # 缺失值使用...TRUE 0.0 5 rows × 22 columns # 针对一个变量进行缺失值判断
is.na(x)] #找出不是缺失值 [1] 1 2 3 > x <- c(1,NA,2,NA,3) > y <- c("a","b",NA,"c",NA) > z 缺失值的元素 > x[z] [1] 1 > y[z] [1] "a" > library(datasets) #import datasets > head(airquality
缺失值处理直接删除统计值填充统一值填充前后向值填充插值法填充预测填充KNN填充具体分析缺失数据可视化 缺失值处理 一般来说,未经处理的原始数据中通常会存在缺失值、离群值等,因此在建模训练之前需要处理好缺失值...删除样本 如果整个数据集中缺失值较少或者缺失值数量对于整个数据集来说可以忽略不计的情况下, 那么可以直接删除含有缺失值的样本记录。...理论部分 对于特征的缺失值,可以根据缺失值所对应的那一维特征的统计值来进行填充。...,那么后向填充无法处理最后一个的缺失值; 如果第一个是缺失值,那么前向填充无法处理第一个的缺失值。...(2)假设有一空值,已知X(test_x)值,但Y值(缺失值的填充词)不知道, 由步骤1求解到的待定系数根据公式Y=AX可以求解出缺失值的数值。
pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...缺失值的判断 为了针对缺失值进行操作,常常需要先判断是否有缺失值的存在,通过isna和notna两个函数可以快速判断,用法如下 >>> a = pd.Series([1, 2, None, 3]) >>...缺失值的填充 通过fillna方法可以快速的填充缺失值,有两种填充方式, 用法如下 >>> a = pd.Series([1, 2, None, 3]) >>> a 0 1.0 1 2.0 2 NaN...同时,通过简单上述几种简单的缺失值函数,可以方便地对缺失值进行相关操作。
领取专属 10元无门槛券
手把手带您无忧上云