学习
实践
活动
工具
TVP
写文章

时数

背景说明         一方面互联网行业对实时化服务的要求日益增多,尤其在信息流,短视频应用最为显著,同时随着实时技术引擎的发展能够提供高效,稳定的实时数据服务能力。 另一方面初期实时计算都是以需求为导向,采用"一路到底"的开发模式,没有形成完整的,统一的,规范化的实时数据体系。 为了避免我们同事踩坑,总结自己的过往实时开发经验,梳理对应实时数据体系。 二. 实时数技术架构和应用 根据离线数据的开发,过往实时开发经验,对应实时计算架构和分层如下图所示: image.png 通常离线数,采用空间换取时间的方式,所以层级划分比较多从而提高数据计算效率 ;而对于实时数考虑时效,分层越少越好,减少分层也是为了减少中间流程出错的可能,主流的是数据接入 → 数据汇总 → 结果输出 这三层。 实时存储规范          实时数据输出是在线系统侧遵从业务方命名规范,如果是数据中心自己的存储,使用实时任务一致的命名规范。 四.

85020

时数:Iceberg

答案是肯定的,这就是本文要介绍的流批一体、湖融合的升级架构解决方案以及高效的数据入湖配套方案。 升级架构 升级之后的架构如下,我们引入了 Iceberg。 Transaction,否则会造成文件数量膨胀 Flink 写入以 Checkpoint 为单位,物理数据写入 Iceberg 之后并不能直接查询,当触发了 Checkpoint 之后才会写 Metadata 文件,这时数据由不可见变为可见 本地操可参考 Flink CDC构建实时数据湖 [1]。企业级实战请使用 腾讯云流计算Oceanus [2]。 参考连接 [1] FlinkCDC构建实时数据湖: https://ververica.github.io/flink-cdc-connectors/release-2.2/content/quickstart

16910
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    时数-Iceberg

    答案是肯定的,这就是本文要介绍的流批一体、湖融合的升级架构解决方案以及高效的数据入湖配套方案。升级架构升级之后的架构如下,我们引入了 Iceberg。 Transaction,否则会造成文件数量膨胀Flink 写入以 Checkpoint 为单位,物理数据写入 Iceberg 之后并不能直接查询,当触发了 Checkpoint 之后才会写 Metadata 文件,这时数据由不可见变为可见 本地操可参考Flink CDC构建实时数据湖[1]。企业级实战请使用腾讯云流计算Oceanus[2]。 参考连接 [1] FlinkCDC构建实时数据湖: https://ververica.github.io/flink-cdc-connectors/release-2.2/content/quickstart

    32430

    分层简介(实时数架构)

    分层简介 1.数分层好处:复杂问题简单化;减少重复开发;隔离原始数据。 2.数分层具体实现 ODS(Operation Data Store)层:原始数据层,存原始数据,直接加载原始日志、数据 DWD(Data Warehouse Detail)层:明细数据层也有叫DWI

    24930

    时数:Lambda架构

    时数:Lambda架构 在某些场景中,数据的价值随着时间的推移而逐渐减少。所以在传统大数据离线数的基础上,逐渐对数据的实时性提出了更高的要求。 于是随之诞生了大数据实时数,并且衍生出了两种技术架构Lambda和Kappa。 Lambda架构 其中Lambda架构是较早的解决方案,使用流处理和批处理两种架构进行数据处理。 其中流处理部分负责实时数据的处理,但流处理因为数据可靠性并不高,所以需要批处理部分定期进行运算稽查。 流处理相当于作为临时视图存在,满足数据实时性要求。而准确数据以批处理计算为主。 ?

    1.1K22

    时数:Kappa架构

    上一期讲了Lambda架构,对于实时数而言,Lmabda架构有很明显的不足,首先同时维护两套系统,资源占用率高,其次这两套系统的数据处理逻辑相同,代码重复开发。 它是随着流处理引擎的逐步完善后,由LinkedIn公司提出的一种实时数架构。 ? 但T-1的数据,是在0点之后通过ETL抽取到离线系统进行计算,而计算过程需要一段时间,假设凌晨2点计算完成,那2点之前的实时数据在计算时,使用的依然是T-2的旧维度数据。 这里的计算流向是:Kafka作为ODS层,存储实时数据;实时流计算任务从ODS获取数据进行计算,计算结果作为DWD层数据,写入到Kafka中存储,供下游实时计算,并且为了与离线系统保持一致,也会推送到离线系统中进行存储

    4.1K21

    “实时数”若干问?

    近期接受ITPUB的专访,谈到关于实时数的若干问题。下面挑选其精华分享如下: 实时数、数据库、湖一体傻傻分不清? 我们可以通过大数据平台这个平台去自己灵活的组装成满足我们一个业务场景的一个具体的一个解决方案,它是这样的概念。也就是说大数据平台是一个通用化的技术平台。 这个时候就出现了我们的湖一体的这个技术。 4.湖一体 湖一体的技术就是融合的数据湖和数据仓库这两种技术,提供了一种大一统的一个解决方案。从更高的维度去看待我们企业内部的数据。 尽管实时数的最终实现效果都是为了数据实时性要求,但实际表现形式却“五花八门”,很多企业用云数、湖一体架构解决实时数需求。您如何看待这种变化?到底什么才是实时数?? 您认为哪些业务场景更适合用实时数平台或者解决方案?自研和采购三方厂商服务都存在怎样的优缺点? 7 实时数,跟所有新技术一样,都有其长处和短板,而不是一种万能的方案,在具体实施上面要分场景。

    8720

    时数|基于Flink1.11的SQL构建实时数探索实践

    时数主要是为了解决传统数数据时效性低的问题,实时数通常会用在实时的OLAP分析、实时的数据看板、业务指标实时监控等场景。 虽然关于实时数的架构及技术选型与传统的离线数会存在差异,但是关于数建设的基本方法论是一致的。 通过本文你可以了解到: 实时数的基本架构 实时数的数据处理流程 Flink1.11的SQL新特性 Flink1.11存在的bug 完整的操作案例 古人学问无遗力,少壮工夫老始成。 案例简介 本文会以电商业务为例,展示实时数的数据处理流程。另外,本文旨在说明实时数的构建流程,所以不会涉及太复杂的数据计算。为了保证案例的可操作性和完整性,本文会给出详细的操作步骤。 总结 本文主要分享了构建一个实时数的demo案例,通过本文可以了解实时数的数据处理流程,在此基础之上,对Flink SQL的CDC会有更加深刻的认识。

    73430

    时数:流式数据建模

    但T-1的数据,是在0点之后通过ETL抽取到离线系统进行计算,而计算过程需要一段时间,假设凌晨2点计算完成,那2点之前的实时数据在计算时,使用的依然是T-2的旧维度数据。 这里的计算流向是:Kafka作为ODS层,存储实时数据;实时流计算任务从ODS获取数据进行计算,计算结果作为DWD层数据,写入到Kafka中存储,供下游实时计算,并且为了与离线系统保持一致,也会推送到离线系统中进行存储

    64320

    时数项目架构分层

    一、滴滴实时数项目 在公司内部,我们数据团队有幸与顺风车业务线深入合作,在满足业务方实时数据需求的同时,不断完善实时数内容,通过多次迭代,基本满足了顺风车业务方在实时侧的各类业务需求,初步建立起顺风车实时数具体架构如下图所示: 从数据架构图来看,顺风车实时数和对应的离线数有很多类似的地方。例如分层结构;比如ODS层,明细层,汇总层,乃至应用层,他们命名的模式可能都是一样的。 但仔细比较不难发现,两者有很多区别: 与离线数相比,实时数的层次更少一些 从目前建设离线数的经验来看,数的数据明细层内容会非常丰富,处理明细数据外一般还会包含轻度汇总层的概念,另外离线数中应用层数据在数内部 ,但实时数中,app应用层数据已经落入应用系统的存储介质中,可以把该层与数的表分离。 * 与离线数相比,实时数的数据源存储不同 在建设离线数的时候,目前滴滴内部整个离线数都是建立在 Hive 表之上。但是,在建设实时数的时候,同一份表,会使用不同的方式进行存储。

    19620

    大数据开发:离线数与实时数

    进入大数据时代,大数据存储的解决方案,往往涉及到数据仓库的选型策略。从传统时期的数据仓库,到大数据环境下的数据仓库,其核心的技术架构是在随着最新技术趋势而变化的。 数据仓库的概念,最早是在1991年被提出,而直到最近几年的大数据趋势下,实时数据处理快速发展,使得数据仓库技术架构不断向前,出现了实时数,而实时数又分为批数据+流数据、批流一体两种架构。 1、离线数 离线数,其实简单点来说,就是原来的传统数,数据以T+1的形式计算好放在那里,给前台的各种分析应用提供算好的数据。到了大数据时代,这种模式被称为“大数据的批处理”。 2、实时数时数最开始是在日志数据分析业务中被广泛使用,后来在各种实时战报大屏的推动,实时数开始应用。 实时数据计算好结果后,可以落地到各种数据库中,也可以直接对接到大屏进行展示。 3、大数据环境下的两种数架构 Lambda 架构 Lambda架构核心就三个:批数据处理层、流数据处理层和服务层。

    2.1K10

    离线数和实时数架构与设计

    前言:离线数和实时数架构与设计讲解 离线数和实时数架构与设计 一、数架构演变(场景驱动) 二、离线大数据架构 三、离线数分层 四、离线大数据架构典型案例 1、Lambda架构 1.Lambda 架构存在的问题 2、Kappa架构 1.Kappa架构典型案例 2.Kappa架构典型案例(一Kylin为例) 3.Kappa架构的重新处理过程 3、Lambda架构 vs Kappa架构的对比 4、实时数 vs 离线数 5、实际业务中如何选择呢 6、现状:混合架构大行其道 7、数的发展趋势 五、疑问解答与加群交流学习 一、数架构演变(场景驱动) 二、离线大数据架构 三、离线数分层 四、离线大数据架构典型案例 2、Kappa架构 1.Kappa架构典型案例 2.Kappa架构典型案例(一Kylin为例) 3.Kappa架构的重新处理过程 3、Lambda架构 vs Kappa架构的对比 4、实时数 vs 离线数 5、实际业务中如何选择呢 6、现状:混合架构大行其道 7、数的发展趋势 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/142435.html

    16930

    打造轻量级实时数实践

    Flink 和 ClickHouse 分别是实时计算和(近实时)OLAP 领域的翘楚,也是近些年非常火爆的开源框架,很多大厂都在将两者结合使用来构建各种用途的实时平台、实时数,效果很好。 关于两者的优点就不再赘述,本文来简单介绍笔者团队在点击流实时数方面的一点实践经验。 按照 Kimball 的维度建模理论,点击流数遵循典型的星形模型,简图如下。 点击流数分层设计 点击流实时数的分层设计仍然可以借鉴传统数的方案,以扁平为上策,尽量减少数据传输中途的延迟。 因此,我们采用了一种比较曲折的方法:将原表重命名,在所有节点上建立与原表 schema 相同的新表,将实时数据写入新表,同时用 clickhouse-copier 工具将历史数据整体迁移到新表上来,再删除原表

    63720

    京东—实时数治理与实战

    21020

    相关产品

    • 大数据处理套件

      大数据处理套件

      腾讯大数据处理套件(TBDS)是基于腾讯多年海量数据处理经验,对外提供的可靠、安全、易用的大数据处理平台。你可以根据不同数据处理需求选择合适的大数据分析引擎和相应的实时数据开发、离线数据开发以及算法开发服务,来构建您的大数据应用服务……

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券