展开

关键词

客户画像中的聚类分析

客户画像会用聚类分析 实际工作中,最常使用的当属回归类模型,其次便是客户画像。 即便是评分模型也会涉及到客户画像,由于首富客户的违约特征与普通百姓不同,故需进行区分,信用分池即为客户画像客户画像使用的技术为聚类分析,在营销场景中经常会逻辑回归模型与聚类分析一起配合构建模型。 聚类分析是什么? 例如: 对奶茶加盟店的经营业绩进行分类; 对来商场消费的客户进行分类; 评估一个产品的好坏时,将繁复的评价指标进行分类,从而简化评估体系。 ?

86520

精准营销神器之客户画像,你值得拥有!

为进一步精准、快速分析用户行为习惯、客户画像应运而生,本文就为大家阐述客户画像是如何生成的。 客户信息千千万,在生成客户画像前,需要了解业务方向与重心,例如,某行想知道零售客户群的分布情况,以及客户标签。故本文就以客户资产、投资偏好、风险承受能力三方面收集了近千条数据。 采用经典机器学习算法——聚类算法来生成客户画像,由于聚类算法是无监督模型,数据质量直接决定分群结果的好坏,这里收集到的数据大部分经过处理。 目标 1. 利用聚类算法,得到合理的分群客户。 2. 以第三类举例,可以看出,第三类客户在资产余额、总权益余额、近6月资产均值、近6月总权益均值的比分上均远远大于均值,并且客户爱购买债券、没有投资股票、基金、理财、贵金属、交易较为频繁且金额较大,基于这个特点 最后如果要给领导看,那么就要学会在解读结果方面下文章,给领导讲讲故事,一个好的客户画像不仅需要使结果具有可解读性,更要能够清晰展现客户特点,以便后续精准营销。 ? 结语 本案例不足之处在于: 1.

1.3K30
  • 广告
    关闭

    腾讯云开发者社区系列公开课上线啦!

    Vite学习指南,基于腾讯云Webify部署项目。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    看哈耶克如何论证基于行为事件的客户画像

    客户历史行为事件构建客户画像可以认为是”哈耶克将’自我’理解为能够统一表达全部意识事件的时空框架”[3]的一种应用。 ◆ ◆ ◆ 理论:哈耶克基于事件的统一意识表达框架 虽然业界的客户画像基本上都是基于标签体系,但是就如前些日子的百度世界大会上大力的推荐其“千人千面”客户画像能力,给用户打了60多万个标签,庞大的标签体系更是证明了特征的随意性以及确认的困难性 [3]所以我们可以认为,以过程的视角,通过个人历史行为事件数据去构建客户画像是与哈耶克基于事件的统一意识表达框架的相一致的。 ◆ ◆ ◆ 结论 本文简单的介绍了哈耶克的统一意识事件框架,并将其视为基于行为事件的客户画像体系下跨领域统一推荐模型理论基础。 我们为什么要这样联想|用哲学论证客户画像体系的复杂性 [OL]. 大数据文摘(公众号). 2016-09-14. 本文版权属于袁峻峰,仅代表个人观点。

    46870

    Apache Kylin在绿城客户画像系统中的实践

    客户画像依赖于DMP的标签管理、用户归一化以及营销相关的客户数据,它为房子的营销推广提供决策支持和依据。 另外一方面,营销相关运营活动也需要画像系统支持。 二、客户画像与Apache Kylin的结合 如前所述,客户画像服务于Marketing,其核心的业务流程可以用下图表示: ? 最终优化之后的客户画像构建流程如下: ? ,节省了前端、UI的开发资源 客户画像依赖的数据、后台计算引擎以及标签都构建完成后,绿城客户画像的一瞥如下图所示: ? 三、未来客户画像系统的展望 绿城客户画像系统目前只服务于房产营销,随着房屋4S、园区商业、绿城+App生活服务平台的日益成熟,画像系统将融合各业务系统数据,完成客户全生活链用户画像的建设,同时客户画像会融入知识图谱

    74840

    Apache Kylin在绿城客户画像系统中的实践

    客户画像依赖于DMP的标签管理、用户归一化以及营销相关的客户数据,它为房子的营销推广提供决策支持和依据。 另外一方面,营销相关运营活动也需要画像系统支持。 二、客户画像与Apache Kylin的结合 如前所述,客户画像服务于Marketing,其核心的业务流程可以用下图表示: ? 最终优化之后的客户画像构建流程如下: ? ,节省了前端、UI的开发资源 客户画像依赖的数据、后台计算引擎以及标签都构建完成后,绿城客户画像的一瞥如下图所示: ? 三、未来客户画像系统的展望 绿城客户画像系统目前只服务于房产营销,随着房屋4S、园区商业、绿城+App生活服务平台的日益成熟,画像系统将融合各业务系统数据,完成客户全生活链用户画像的建设,同时客户画像会融入知识图谱

    81980

    用户画像

    关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例

    2K20

    用户画像

    开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。 本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。 将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。 图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。 本文摘编于《用户画像:方法论与工程化解决方案》,经出版方授权发布。

    1.3K30

    画像分析

    关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前宝器在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例

    71850

    数据画像

    健康码画像让普通大众理解了数据,其实在实际的应用中还有很多针对特定场景的画像,如用户画像、产品画像、业务经营画像等,下面以用户画像为例讲解。 02 什么是用户画像? 03 用户画像的意义 1)从企业层面而言,识别目标客户特征、测试客户潜在需求。 2)从产品本身角度而言,用户画像可以帮助提升客户体验。围绕产品进行客群细分,确定产品的核心客群,从而有助于确定产品定位,优化产品的功能点。 如客户管理系CRM,或者有智能采集系统日志的工具,收集方式包括API、SDK和传感器采集等,根据数据分析与数据挖掘什么标签来反推需要的数据源。 3.数据标准化:用户画像需要整合多源甚至跨系统的数据,如客户可能使用多个设备,拥有移动网络的多个账号,需要把同一个身份ID组合,建立统一的标准,才能完整标识实体的用户画像

    2.9K40

    Flink用户画像用户画像行为特征

    ","id":15,"tablename":"user_info","account":"abcd","age":24,"email":"981456@qq.com","status":0} 创建用户画像 reduce.addSink(new CarrierAnalySink()); env.execute("portrait carrier"); } } 创建用户画像会员分类标签 ); reduce.addSink(new MemberAnalySink()); env.execute("portrait member"); } } 用户画像行为特征 这里我们会分析用户的几个行为,并进行画像 浏览商品行为:频道id、商品id、商品类别id、浏览时间、停留时间、用户id、终端类别(1、PC端,2、微信小程序,3、app)、deviceId。 创建用户画像商品类别偏好标签 创建一个商品类型标签实体类 @Data public class ProductTypeLabel { private Long userid; private

    29410

    用户画像构建

    用户画像是指用户的进行标签化、信息结构化。 构成用户画像的基本元素通常有:姓名、照片、个人信息、经济状况、工作信息、计算机互联网背景。 用来丰富用户画像的元素有:居住地、工作地点、公司、爱好、家庭生活、朋友圈、性格、个人语录等等。 创建用户画像的方法 ? 用户画像的作用 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数; 数据挖掘,构建智能推荐系统,利用关联规则计算

    1.2K11

    用户画像基础

    图1-6 用户画像建设项目流程 第一阶段:目标解读 在建立用户画像前,首先需要明确用户画像服务于企业的对象,再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。 就后文将要介绍的案例而言,需要从用户属性画像、用户行为画像、用户偏好画像、用户群体偏好画像等角度去进行业务建模。 通过在客户端做埋点,从日志数据中解析出来。 ? ? 表1-4 埋点日志表(ods.page_event_log) ④ 访问日志表 访问日志表(见表1-5)存放用户访问App的相关信息及用户的LBS相关信息,通过在客户端埋点,从日志数据中解析出来。 ? 初步介绍了画像系统的轮廓概貌,帮助读者对于如何设计画像系统、开发周期、画像的应用方式等有宏观的初步的了解。

    2K50

    我们为什么要这样联想|用哲学论证客户画像体系的复杂性

    ,从哲学的角度来论证客户画像体系的复杂性。 2、基于个人客户画像的特征库 目前业界的个人画像主要在机构内部数据结合外部数据基础上构建。如对原始数据进行特征提取,得到如下客户特征: ? 2、从个人行为事件的客户画像到跨领域统一推荐模型 让我们试着忘记特征体系,是否可以尝试只通过那些在时间轴上,在特定场景下的总总事件来构建客户画像呢? 假设已合法的收集个人行为数据。 该框架不同于以往跨领域深度学习模型中样本数据,不再基于客户特征画像体系,而是用事件轴上的系列事件标记客户,使用深度学习LSTM模型预测客户当前事件发生概率。 这仿佛在做着《少数派报告》中的事。 ◆ ◆ ◆ 四、总结 我们借多年前福柯的《词与物》[1]中的哲学立场讨论了个人客户画像特征体系构建中的问题,从哲学的角度来论证客户画像体系的复杂性。

    26630

    腾讯、网易、搜狐、头条等四大新闻客户端用户画像分析

    主要内容 中国移动新闻资讯应用市场发展现状 中国移动新闻资讯应用用户特征分析 新闻客户端用户特征差异分析 中国移动新闻资讯应用市场发展现状 新闻资讯领域表现突出,用户渗透率超过五成 从整体移动端各细分领域来看 四大新闻客户端各领域TGI特征值 ? ? ? ? 研究范围及研究内容 研究范围 本报告的主要研究对象网易新闻客户端,同时还研究了新闻资讯行业处于领先地位的几大客户端的用户情况:腾讯新闻、今日头条、搜狐新闻等。 研究内容 本报告的主要研究内容涉及中国新闻资讯市场现状、用户行为和特征分析,典型新闻客户端用户特征分析以及网易新闻客户端相关领域用户分析。 本报告中涉及的用户粘性主要依据用户对客户端的平均单日打开频次和平均单日使用时长(单位:分钟)判断。

    13.4K30

    如何构建用户画像

    image.png 在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: image.png 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 image.png 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 其实在画像背后,是丰富的资料库和调研信息。用户画像强调简单易用,但当实际工作中需要例证和具体数据时,我们依旧可以调用其他信息。 4.  验证效果 image.png 我们开篇强调过,用户画像是为业务服务的。因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。

    17700

    如何构建用户画像

    在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 以上信息归纳总结,就是最终的用户画像: 成就型人格者: 外向型探索家: 剧中人: 客观型行业人员: 画像完成后,可能有朋友要问,做了那么多前期工作,最后就剩下简洁的画像了? 因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。

    53230

    什么是用户画像

    0x00 前言 视频号分享中【什么是用户画像】的文案,文字版分享给大家~内容虽然短,但是能锻炼在1分钟讲一个概念的能力,如果以后有朋友问你用户画像是什么,你可以用下面1分钟左右的文稿告诉他。 今天要和大家分享的话题是:用户画像。 0x01 画像 那么,什么是用户画像呢?我来举个例子说明: 假设你有一位朋友:他是一名35岁左右的男性,周六日喜欢宅在家里,而且每天点外卖。 那把上面这些标签和在一起,就形成了你朋友的用户画像,看一下,熟悉吗? 0x02 应用 那么有了这些画像之后,有什么用呢?

    51710

    相关产品

    • 企业画像

      企业画像

      企业画像是腾讯云推出的面向智慧城市、金融监管、企业情报、企业评估等场景的企业大数据综合服务平台。通过构建亿级企业知识图谱,深度挖掘企业、高管、法定代表人、产品、产业链间的复杂网络关系,提供城市、区域宏观经济分析、招商引资推荐服务,引导地方产业发展……

    相关资讯

    热门标签

    扫码关注腾讯云开发者

    领取腾讯云代金券