在计算过程中,通常需要对计算结果进行统计,ANSYS计算的模型大多时候节点单元数目很多,结果数据也很多,因此在GUI界面的查询操作不太方便,工作量太大,而且结果不好记录。...另一方面,需要对我们自己编写的有限元程序进行验证,这时用ANSYS建模,再把相关数据导出来利用相同的有限元模型计算对比是个好办法。...现在来说说利用APDL编写命令流,提取用ANSYS建立有限元模型的数据。...*GET命令作为一个提取信息的常用命令,作用非常大,不管是在前处理、求解还是后处理过程中,都能够有发挥的空间,尤其是后处理过程,对结果的批量输出来说不可缺少。...如要将所有单元上的节点导出,写入一个 elemnodes.txt的文件中,命令流如下: ? 当然,还可以导出位移,荷载,应力等等。 PS:APDL貌似不支持整型格式,故整数也当浮点数输出了。
将Maple输出的LaTex导出到txt文件 1....生成LATEX Maple可以把它的表达式转换成LATEX, 使用latex命令即可: > latex(x^2+y^2=z^2); {x}^{2}+{y}^{2}={z}^{2} 还可以将转换结果存为一个文件..._{\nu}\left(z\right)}+{{\sl J}_{\nu}\left(z\right)}" 注意: LambertW erf arctanh这几个命令会导致Latex命令报错,需要在使用的时候替换掉
在周二我给精算师上的5小时机器学习速成课结束时,皮埃尔问了我一个有趣问题,是关于不同技术的计算时间的。我一直在介绍各种算法的思想,却忘了提及计算时间。我想在数据集上尝试几种分类算法来阐述这些技术。...elapsed 50.327 0.050 50.368 > object.size(fit) 6,652.160 kbytes 我也想尝试caret,这个软件包很适合用来对比模型...elapsed 9.469 0.052 9.701 > object.size(fit) 846.824 kbytes 这两种技术都需要10秒左右,远远超过基本的逻辑回归模型...user system elapsed 360.421 2.007 364.669 > object.size(fit) 4,027.880 kbytes 输出如下...现在我需要在更快的机器上运行相同的代码,来尝试更大的数据集......
预测建模 与 描述建模 II . 预测模型 与 函数映射 III . 预测模型的分类 ( 分类 | 回归 ) IV . 预测建模 测试集 V . 预测建模 拟合过程 VI ....预测模型结构确定 VII . 基于分类的判别模型 VIII . 基于分类的概率模型 IX . 预测模型的评分函数 X . 基于回归的预测模型 I . 预测建模 与 描述建模 ---- 1 ....预测模型 与 函数映射 : ① 函数映射 : 预测模型的函数映射形式如下 Y=f (X ; \theta) ② 函数形式 : f 是预测模型 的 函数映射 的 函数形式 ; ③ 未知参数 :...预测模型结构 : 预测模型结构是 Y=f (X ; \theta) 函数映射形式 , 模型建立时 , 不知道该映射的 结构形式 和 参数值 , 首先要确定其函数的结构形式 ; ① 模型基础 : 预测模型中的...: 模型的预测值 , 与实际观察的值 , 可能存在不一致 , 实际的值可能在模型预测值的周围分布 ; 3 .
模型导出与部署 当进行模型转换时,我们需要将本地基于YOLOv8模型训练得到的"best.pt"模型文件转换为ONNX文件格式,以便在不同平台上进行部署和使用。...模型转换 图片 图片 图片 图片 在成功将pt模型文件导出为onnx模型文件后,接下来的关键步骤是使用Aidlux平台自带的AI Model Optimizer平台将onnx模型转换为TFLite...TFLite模型的导出和转换过程旨在优化模型的推理性能,使其适用于移动设备和嵌入式系统等资源有限的环境。这样,我们可以确保在各种应用场景下都能够高效地执行缺陷检测任务。 ...TFLite模型的后处理可能与DLC模型有所不同,因为模型输出的格式可能会有差异。在后处理阶段,我们需要根据模型的输出结构来解析结果。 ...使用Aidlux完成本地终端的模型推理预测视频如下:使用Aidlux平台自带的AI Model Optimizer平台将onn模型转换为tflite模型和dlc模型文件后进行推理预测_哔哩哔哩_bilibili
基于回归模型的销售预测 小P:小H,有没有什么好的办法预测下未来的销售额啊 小H:很多啊,简单的用统计中的一元/多元回归就好了,如果线性不明显,可以用机器学习训练预测 数据探索 导入相关库 # 导入库...model_gbr] pre_y_list = [model.fit(X_train, y_train).predict(X_test) for model in model_list] # 各个回归模型预测的...) # 建立回归指标的数据框 print('all samples: %d \t features: %d' % (n_samples, n_features),'\n','-'*60) # 打印输出样本量和特征数量...= model_gs.best_estimator_ # 获得交叉检验模型得出的最优模型对象 pre_y = model_xgbr.predict(X_test) # 模型评估 优于上次 model_metrics_list...,而且不难发现XGBoost在回归预测中也具有较好的表现,因此在日常业务中,碰到挖掘任务可首选XGBoost~ 共勉~
Tensorflow2的h5格式的模型转换成tflite格式模型非常方便。...= converter.convert()open("mobilenet_v2.tflite", "wb").write(tflite_model)在部署到Android中可能需要到输入输出层的名称,...通过下面代码可以获取到输入输出层的名称和shape。...在构造方法中,通过参数传递的模型路径加载模型,在加载模型的时候配置预测信息,例如是否使用Android底层神经网络APINnApiDelegate或者是否使用GPUGpuDelegate,同时获取网络的输入输出层...,通过执行tflite.run()对输入的数据进行预测并得到预测结果,通过解析获取到最大的概率的预测标签,并返回。
大家在训练深度学习模型的时候,有没有遇到这样的场景:分类任务的准确率比较高,但是模型输出的预测概率和实际预测准确率存在比较大的差异?这就是现代深度学习模型面临的校准问题。...这篇文章首先给大家介绍模型输出预测概率不可信的原因,再为大家通过10篇顶会论文介绍经典的校准方法,可以适用于非常广泛的场景。...因此模型会倾向于over-confident,即对于样本尽可能的让模型预测为正确的label对应的概率接近1。模型过拟合交叉熵,带来了分类准确率的提升,但是牺牲的是模型输出概率的可信度。...本文定义的MMCE原理来自评估模型校准度的指标,即模型输出类别概率值与模型正确预测该类别样本占比的差异。...4 总结 本文梳理了深度学习模型的校准方法,包含10篇经典论文的工作。通过校准,可以让模型输出的预测概率更加可信,可以应用于各种类型、各种场景的深度学习模型中,适用场景非常广泛。 END
Tensorflow2的h5格式的模型转换成tflite格式模型非常方便。...= converter.convert() open("mobilenet_v2.tflite", "wb").write(tflite_model) 在部署到Android中可能需要到输入输出层的名称...,通过下面代码可以获取到输入输出层的名称和shape。...在构造方法中,通过参数传递的模型路径加载模型,在加载模型的时候配置预测信息,例如是否使用Android底层神经网络APINnApiDelegate或者是否使用GPUGpuDelegate,同时获取网络的输入输出层...,通过执行tflite.run()对输入的数据进行预测并得到预测结果,通过解析获取到最大的概率的预测标签,并返回。
TFLite 测 试 为了测试转换后的模型,我生成了一组大约 1000 个输入张量,并为每个模型计算了 PyTorch 模型的输出。...这个集合后来被用来测试每个转换后的模型,方法是通过一个平均误差度量,在整个集合中将它们的输出与原始输出进行比较。...在相同的输入下,平均误差反映了在相同的输入下,转换后的模型输出与原始 PyTorch 模型输出相比有多大的不同。 我决定将平均误差小于 1e-6 的模型视为成功转换的模型。...这主要归功于 PyTorch 的优秀文档,例如 TORCH.ONNX 的文档 和《(可选)将模型从 PyTorch 导出到 ONNX 并使用 ONNX 运行时运行》((Optional) Exporting..., 'wb') as f: f.write(tf_lite_model) TF 冻结图到 TFLite你可能会认为,在经历了所有这些麻烦之后,在新创建的tflite模型上运行 推理 可以平静地进行。
,我们可以使用这些模型来运用到我们自己的项目中。...如果使用的是同一个深度学习框架,那就很方便,可以直接使用,但是如果时不同深度学习框架,我们就要对模型转换一下。下面我们就介绍如何把Caffe的模型转换成PaddlePaddle的Fluid模型。...在下一步我们会使用这个模型文件来预测我们的图片。...测试预测模型 获得预测模型之后,我们可以使用它来在PaddlePaddle预测图像,首先要编写一个PaddlePaddle的预测程序: # coding=utf-8 import os import time...params" infer_one(image_path, use_cuda, model_path, model_filename, params_filename) 使用上面的程序就是使用转换的模型来预测图片了
TensorFlow for Poets 2:谷歌的TFLite教程,重新训练识别花卉的模型。 这些示例和教程更侧重于使用预先训练的模型或重新训练现有的模型。但是用户自己的模型呢?...从一个简单的模型开始 首先,我想选择一个未经过预先训练或转换成.tflite文件的TensorFlow模型,理所当然我选择使用MNIST数据训练的简单的神经网络(目前支持3种TFLite模型:MobileNet...(另外一个好处是,如果您共享模型而没有共享训练脚本,开发人员可以研究模型并快速识别图形的输入输出)。 我开始猜想Logit层是输出层,但那不是我们想要获得推断结果的层。...由于我们希望准备好的模型仅用于移动平台上的推断(在MNIST数据的情况下预测手写数字),因此我们只需要预测所需的图层。请记住,我们正在使用的MNIST脚本既有训练又有预测。...在更复杂的模型中,您可能会遇到TFLite不支持的操作,因此了解它们是哪些操作并查看是否可以使用graph_transform工具进行操作,也是很好的。 为输入和输出层命名。
然而经向前法、向后法与逐步回归法筛选出的变量构建的模型并不是最优模型,若想构建最优模型,可以通过构建每个X的组合去获取最优变量组合,即全子集法。...我眼中的回归预测 回归模型的预测功能指根据自变量X的取值去 估计或预测 因变量Y的取值,一般,预测或估计的类型主要有两种,即: 1、点估计 Y的平均值的点估计 Y的个别值的点估计 2、区间估计...Y的平均值的置信区间估计 Y的个别值的预测区间估计 需要注意,用回归模型进行预测时,模型中自变量的取值离均值越远则预测的结果就会越不可靠。...例如,构建收入消费模型,自变量之一为收入水平,且收入水平的取值为5万-50万,那么该模型是不能够预测收入500万的人群的。...但是有些时候无法保证预测的X值一定就在建模样本X的值域范围内,这种情况即需要用到外推预测forecast,回归模型无法实现外推预测,一般外推预测forecast会存在于时间序列中。
但即便是模型制作者也承认,许多模型存在一个明显的问题:预测过热过快的未来。一些研究人员则担心,这导致了一系列“比预期更快”的结果,可能会削弱气候科学的可信度。...Marvel说,其实在这些模型中,许多都比它们的“前辈”更好,而且模型制作者对这一问题一直持开放态度,“应该受到赞扬”。但他们需要数年时间才能做出广泛应用的新预测模型。...IPCC根据模型捕捉历史温度的能力对其进行评级,之后利用模型针对不同的化石燃料排放情景,做出了官方的“评估变暖”预测。...自此以后,数十项已发表的研究使用了基于所有CMIP6模型原始平均值的预测,结果往往比IPCC的预测“更糟”——这引起了那些不了解模型潜在问题的人的注意。Marvel表示,“并不是因为有人心怀恶意。...其次,使用IPCC自己的“评估变暖”预测,以预测变暖程度可能何时出现。对于变暖轨迹细节很重要的研究,他们可以使用一些相对准确地捕捉升温的模型,比如NASA、美国国家海洋和大气管理局等机构制作的模型。
2023年4月发表了一个新的模型,它在时间序列分析的多个任务中实现了最先进的结果,如预测、imputation、分类和异常检测:TimesNet。...使用自适应聚合的原因是不同的周期有不同的振幅,这表明了它们的重要性。 这就是为什么FTT的输出也被发送到softmax层,这样可以使用每个周期的相对重要性进行聚合。...聚合的数据是单个TimesBlock的输出。然后将多个TimesBlock与残差连接叠加创建TimesNet模型。...我们还保留了两个96个时间步长的窗口来评估我们的模型。 我们定义一个我们想要用来执行预测任务的模型列表。这里将使用N-BEATS, N-HiTS和TimesNet。...一如既往,每个预测问题都需要一个独特的方法和一个特定的模型,所以你可以在你的模型列表中增加一个TimesNet了。
基于树的学习算法被认为是最好的方法之一,主要用于监测学习方法。基于树的方法支持具有高精度、高稳定性和易用性解释的预测模型。不同于线性模型,它们映射非线性关系相当不错。...在成功完成本教程之后,有望初学者成为一个精通使用基于树的算法并能够建立预测模型的人。 注意:本教程不需要先验知识的机器学习。然而,了解R或Python的基础知识将是有益的。...开始你可以遵循Python 和R的完整教程。 1.决策树是什么?它是如何工作的呢? 决策树是一种监督学习算法(有一个预定义的目标变量),主要是用于分类问题。它适用于分类和连续的输入和输出变量。...现在,我想创建一个模型来预测谁会在休闲期间打板球。在这个问题上,我们需要根据非常重要的三个输入变量来隔离在闲暇时间打板球的学生。...⑤这两种树模型都遵循的自上而下的贪婪的方法称为递归二分分裂。我们之所以叫它为“自上而下”,是因为当所有的观察值都在单个区域时它先从树的顶端开始,然后向下将预测空间分为两个分支。
完成本教程后,你将了解: 如何加载和准备臭氧日标准机器学习预测建模问题。 如何开发朴素预测模型并使用BSS评估预测。 如何集成决策树开发熟练的模型,并调优成功模型的超参数进一步提高性能。...该数据集被用作开发预测模型的基础,模型使用一系列可能与预测臭氧水平相关(也可能无关!)的变量,此外还有一些已知的与实际化学过程相关的变量。...(1803, 73) (730, 73) 朴素预测模型 一个可以预测臭氧日概率的朴素模型。这是一种朴素的方法,因为它不使用除事件基本比率之外的任何信息。在气象预报的验证中,这被称为气候预报。...我们可以看到包含每个更改的配置都明显优于基线模型和其他配置组合。 也许通过对模型进行参数调优还可以进一步提高性能。 ? 总结 在本教程中,你了解了如何开发概率预测模型来预测大气污染。...具体来说,你学到了: 如何加载和准备臭氧日标准机器学习预测建模问题。 如何开发朴素预测模型并使用BSS评估预测。 如何集成决策树开发熟练的模型,并调优成功模型的超参数进一步提高性能。
3.2 车牌检测+识别模型的tflite的轻量化 因为模型需要部署在移动端,所以还需要将模型轻量化,同时考虑后面我们使用的aidlux对tflite的支持,所以选用tflite框架,对模型轻量化。...车牌检测是使用yolov5来实现的,车牌识别是使用LPRNET实现的,直接将转换好的onnx导出成tflite模型即可,但tflite推理过程中需要注意调整代码中outputs的顺序,因为onnx最后特征层输出的排序是...20,40,80,而tflite最后特征层输出的排序是40,20,80。...,需导入aidlite aidlite = aidlite_gpu.aidlite() # Aidlite模型路径 # 定义输入输出shape # 加载Aidlite检测模型:支持tflite, tnn...aidlite.setInput_Float32(image_recog,94,24) aidlite.invoke() #取得模型的输出数据
选择已训练好的 .tflite 模型文件。 导入完成后,Android Studio 会显示模型的概要信息,提供示例代码。 然后可以看到提供了两种编程语言代码的模板,根据个人喜爱用哪种编程语言。...4.1 使用 TensorFlow 训练模型,最后导出 .tflite 模型 以下模型训练的代码,最后生成nim_model.tflite 文件部署: import tensorflow as tf...tf.keras.layers.Dense(10, activation='softmax') # 输出层,有10个类别 ]) # 编译模型 model.compile(optimizer...(tflite_model) 保存模型文件代码码会输出一个 nim_model.tflite 文件,参考第三章的操作步骤实现,略讲。...我特别喜欢它的 API 设计,它让复杂的模型推理工作变得直观易懂。通过一些工具和指南,轻松就能将 Keras 模型转换为 .tflite 文件并集成到 Android 项目中。
平均精确度衡量我们模型对所有37个标签的正确预测百分比。IoU特定于对象检测模型,代表Intersection-over-Union。...训练后,我们的模型实现了82%的平均精确度。 接下来,查看TensorBoard 中的Images选项卡: ? 在左图中,我们看到了模型对此图像的预测,在右侧我们看到了正确的地面真值边框。...边界框非常准确,但在这种特殊情况下,我们模型的标签预测是不正确的。没有ML模型可以是完美的。...这两个脚本都输出了冻结图:export_tflite_ssd_graph输出我们可以直接输入到TensorFlow Lite的冻结图,并且这是我们要使用的图。...量化模型的输出被命名为‘TFLite_Detection_PostProcess’,‘TFLite_Detection_PostProcess:1’,‘TFLite_Detection_PostProcess
领取专属 10元无门槛券
手把手带您无忧上云