由外部存储系统的数据集创建,包括本地文件系统,还有Hadoop支持的数据集,如HDFS,HBase
当我们使用Spark加载数据源并进行一些列转换时,Spark会将数据拆分为多个分区Partition,并在分区上并行执行计算。所以理解Spark是如何对数据进行分区的以及何时需要手动调整Spark的分区,可以帮助我们提升Spark程序的运行效率。
对于数据分析而言,数据大部分来源于外部数据,如常用的CSV文件、Excel文件和数据库文件等。Pandas库将外部数据转换为DataFrame数据格式,处理完成后再存储到相应的外部文件中。 Pandas 常用的导入格式:import pandas as pd
Spark RDD 支持2种类型的操作: transformations 和 actions。transformations: 从已经存在的数据集中创建一个新的数据集,如 map。actions: 数据集上进行计算之后返回一个值,如 reduce。
Python数据分析——数据加载与整理 总第47篇 ▼ (本文框架) 数据加载 导入文本数据 1、导入文本格式数据(CSV)的方法: 方法一:使用pd.read_csv(),默认打开csv文件。 9、
这里,并没有指定要用哪个列进行连接,如果没有指定,就会默认将重叠列的列名当作连接键。这里连接的结果是按照笛卡儿积的逻辑实现的。在这个例子中表现不太明显,我们再看下一个例子。
本篇博客将会汇总记录大部分的Spark RDD / Dataset的常用操作以及一些容易混淆的操作对比。
上面两篇大部分介绍的都是理论知识,希望看到前两篇的都读读。读一遍 不容易理解现在这一篇是介绍api操作的。相对来说容易些也是方便我自己记忆。简单api使用还是特别简单的,如果需要处理的数据量特别的大,那么一定记住api使用调优。 RDD的两种类型操作。 有哪两种操作呢?分别是transformation ,action 也是我们上面所说的转换 和行动。 Transformations 使用的是常用的api操作还有很多可能介绍不到 map():将原来的RDD的每个数据想根据自定义函数进行映射,转换成一个
----------目录--------------------------------------------------------- 1.Scala简介和安装 2.Scala语法介绍 3.Scala的函数 4.Scala中的集合类型 ------------------------------------------------------------------------------------------------------------- Scala中的集合类型 Scala提供了一套
Kotlin的设计初衷是开发效率更高的Java,可以适用于任何Java涉及的应用场景,除了常见的信息管理系统,还能用于WebServer、Android项目、游戏开发,通用性比较好。Scala的设计初衷是整合现代编程范式的通用开发语言,实践中主要用于后端大数据处理,其他类型的项目中很少出现,通用性不如Kotlin。SPL的设计初衷是专业的数据处理语言,实践与初衷一致,前后端的数据处理、大小数据处理都很适合,应用场景相对聚焦,通用性不如Kotlin。
上面两篇大部分介绍的都是理论知识,希望看到前两篇的都读读。读一遍 不容易理解现在这一篇是介绍api操作的。相对来说容易些也是方便我自己记忆。 RDD的两种类型操作 有哪两种操作呢?分别是transformation ,action 也是我们上面所说的转换 和行动。 Transformations 使用的是常用的api操作还有很多可能介绍不到 1. map():将原来的RDD的每个数据想根据自定义函数进行映射,转换成一个新的RDD。 SparkConf conf = new SparkCon
本篇博客是Spark之【RDD编程】系列第二篇,为大家带来的是RDD的转换的内容。
因为5份数据集以csv格式存储,首先就是获得存储路径下所有的csv格式文件的文件名,用到的命令是
谈到DataFrame数据的合并,一般用到的方法有concat、join、merge。 这里就介绍concat方法,以下是函数原型。
Set 特性 不重复、无序 不可变set 创建Set& apply方式创建 val set=Set[Int](1,2,3,4,5) 查看setApi 进入 scala $ scala Welcome to Scala 2.12.10 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_172). Type in expressions for evaluation. Or try :help. scala> val set=Set[Int](1,2,3,4
从一个已知的 RDD 中创建出来一个新的 RDD 例如: map就是一个transformation.
数据框来源主要包括用代码新建(data.frame),由已有数据转换或处理得到(取子集、运算、合并等操作),读取表格文件(read.csv,read.table等)及R语言内置数据
使用List(元素1, 元素2, 元素3, ...)来创建一个不可变列表,语法格式:
对于数据分析师而言,Pandas与SQL可能是大家用的比较多的两个工具,两者都可以对数据集进行深度的分析,挖掘出有价值的信息,但是二者的语法有着诸多的不同,今天小编就来总结归纳一下Pandas与SQL这两者之间在语法上到底有哪些不同。
写在前面: 博主是一名大数据的初学者,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/ 尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一天的生活就是一生的缩影。
可以看到这个索引就是0和1,如果你直接append而不加参数则就会直接将上面的DataFrame直接和df_append粘在一起而不会改变索引,那么怎么改变索引使得这个索引顺着前面的索引呢?看下面的例子:
========== Spark GraphX 概述 ========== 1、Spark GraphX是什么? (1)Spark GraphX 是 Spark 的一个模块,主要用于进行以图为核心的计算还有分布式图的计算。 (2)GraphX 他的底层计算也是 RDD 计算,它和 RDD 共用一种存储形态,在展示形态上可以以数据集来表示,也可以图的形式来表示。
共嵌入(Co-embedding)用于比较相似的数据集,以识别相似性和差异性,并在细胞间传输注释。🤓
这一篇是一些简单的Spark操作,如去重、合并、取交集等,不管用不用的上,做个档案记录。
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用;另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系。 本篇就着重描述
(1)zeroValue:给每一个分区中的每一个key一个初始值; (2)seqOp:函数用于在每一个分区中用初始值逐步迭代value; (3)combOp:函数用于合并每个分区中的结果。
R中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能。与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式。 其中inner为默认的匹配模式,可与sql语言中的join语句用法。
众所周知,csv文件默认以逗号“,”分割数据,那么在scala命令行里查询的数据:
第一部分会对零零散散进行了两个多月的用户画像评测做个简要回顾和总结,第二部分会对测试中用到的python大数据处理神器pandas做个整体介绍。
在单细胞的数据分析当中,每个亚群的top基因是十分重要的,因为这一部分的基因主要是代表了这一亚群的高表达基因,为了后面的分群鉴定,主要是通过seurat的findallmarkers这个函数进行计算。可以参考这个博主的文章,对源码解析的很细https://www.jianshu.com/p/f5c8f9ea84af,同时对应着这个函数的解析http://www.idata8.com/rpackage/Seurat/FindAllMarkers.html。
本文基于Spark 3.2.0 Scala的RDD API,内容来源主要由官方文档整理,文中所整理算子为常用收录,并不完全。在Spark RDD官方文档中按照转换算子(Transformation )和行动算子(Action)进行分类,在RDD.scala文档中按照RDD的内部构造进行分类。RDD算子分类方式并不是绝对的,有些算子可能具有多种分类的特征,本文综合两种分类方式便于阅读理解。文中所描述的基本概念来自于官方文档的谷歌翻译和ChatGPT3.5优化,少量来自本人直接翻译。
表格是存储数据的最典型方式,在Python环境中没有比Pandas更好的工具来操作数据表了。尽管Pandas具有广泛的能力,但它还是有局限性的。比如,如果数据集超过了内存的大小,就必须选择一种替代方法。但是,如果在内存合适的情况下放弃Pandas使用其他工具是否有意义呢?
本文主要介绍了如何从零开始学习Spark,包括安装、部署、数据操作、函数编程、机器学习等方面的内容。作者以实际例子为引子,采用通俗易懂的语言,详细介绍了Spark的基本概念、操作、优化和调试方法,为初学者提供了一套系统的学习方案。
Redis 支持多种数据结构,比如 字符串、列表、集合、有序集合 和 哈希 等数据结构。本次我整理了关于 集合 相关的命令,也就是关于 Sets 相关的命令,如下图。
Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作。它的名字来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的。简单地说,你可以把 Pandas 看作是 Python 版的 Excel。
最近一段时间的R语言学习笔记,以便于自己学习之用,特记录在博客中,感兴趣的人还可以看看。记录的东西也不一定正确,请大家指教,里面可能会引用到一些别人的资料等,作为学习之用 读书笔记 相关的函数记录与整理 1、source("文件名.r"):调取主程序的文件,在程序结构复杂的时候很有用,可以将一部分复杂的运算主程序放入其中。 2、install.packages("fields"):安装程序包 3、library(fields):导入程序包 4、t(x)转置函数,对于csv中横排的转置很有用 5、dev.o
========== Spark SQL ========== 1、Spark SQL 是 Spark 的一个模块,可以和 RDD 进行混合编程、支持标准的数据源、可以集成和替代 Hive、可以提供 JDBC、ODBC 服务器功能。
我们需要一个效率非常快,且能够支持迭代计算和有效数据共享的模型,Spark 应运而生。RDD 是基于工作集的工作模式,更多的是面向工作流。 但是无论是 MR 还是 RDD 都应该具有类似位置感知、容错和负载均衡等特性。
本篇作为scala快速入门系列的第十三篇博客,为大家带来的是关于列表的相关内容。
例如,map 是一个转换操作,传递给每个数据集元素一个函数并返回一个新 RDD 表示返回结果。另一方面,reduce 是一个动作操作,使用一些函数聚合 RDD 的所有元素并将最终结果返回给驱动程序(尽管还有一个并行的 reduceByKey 返回一个分布式数据集)。
小编们最近参加了数据城堡举办的“大学生助学金精准资助预测”比赛,分组第19名的成绩进入了复赛,很激动有木有!在上一篇文章中,小编主要介绍了pandas中使用drop_duplicates()方法去除重复数据。本篇,小编文文将带你探讨pandas在数据合并的应用。 1 上期回顾 首先,小编带你回顾一下drop_duplicates()方法的使用,我们定义一个DataFrame如下: df=pd.DataFrame({'id':[1,1,2],'value':[5,10,12]}) print (df) 输出如
之前写 datamash 的使用教程 linux 极简统计分析工具 datamash 必看教程,收到了一位读者的私信,内容如上。
创建变长数组,需要提前导入ArrayBuffer类 import scala.collection.mutable.ArrayBuffer
在上一篇集合的分享中,讲解了Scala中集合的基本概述以及常用集合的基本操作,本次住要分享Scala中集合更高级的操作。
键值对 RDD 通常用来进行聚合计算。我们一般要先通过一些初始 ETL(抽取、转化、装载)操作来将数据转化为键值对形式。键值对 RDD 提供了一些新的操作接口(比如统计每个产品的评论,将数据中键相同的分为一组,将两个不同的 RDD 进行分组合并等)。
前言 在上一期内容中,菌哥已经为大家介绍了实时热门商品统计模块的功能开发的过程(?基于flink的电商用户行为数据分析【3】| 实时流量统计)。本期文章,我们需要学习的是恶意登录监控模
备注:数组方法 1 def apply( x: T, xs: T* ): Array[T] 创建指定对象 T 的数组, T 的值可以是 Unit, Double, Float, Long, Int, Char, Short, Byte, Boolean。 2 def concat[T]( xss: Array[T]* ): Array[T] 合并数组 3 def copy( src: AnyRef, srcPos: Int, dest: AnyRef, destPos: Int, length: Int ): Unit 复制一个数组到另一个数组上。相等于 Java's System.arraycopy(src, srcPos, dest, destPos, length)。 4 def empty[T]: Array[T] 返回长度为 0 的数组 5 def iterate[T]( start: T, len: Int )( f: (T) => T ): Array[T] 返回指定长度数组,每个数组元素为指定函数的返回值。 以上实例数组初始值为 0,长度为 3,计算函数为a=>a+1: scala> Array.iterate(0,3)(a=>a+1) res1: Array[Int] = Array(0, 1, 2) 6 def fill[T]( n: Int )(elem: => T): Array[T] 返回数组,长度为第一个参数指定,同时每个元素使用第二个参数进行填充。 7 def fill[T]( n1: Int, n2: Int )( elem: => T ): Array[Array[T]] 返回二数组,长度为第一个参数指定,同时每个元素使用第二个参数进行填充。 8 def ofDim[T]( n1: Int ): Array[T] 创建指定长度的数组 9 def ofDim[T]( n1: Int, n2: Int ): Array[Array[T]] 创建二维数组 10 def ofDim[T]( n1: Int, n2: Int, n3: Int ): Array[Array[Array[T]]] 创建三维数组 11 def range( start: Int, end: Int, step: Int ): Array[Int] 创建指定区间内的数组,step 为每个元素间的步长 12 def range( start: Int, end: Int ): Array[Int] 创建指定区间内的数组 13 def tabulate[T]( n: Int )(f: (Int)=> T): Array[T] 返回指定长度数组,每个数组元素为指定函数的返回值,默认从 0 开始。 以上实例返回 3 个元素: scala> Array.tabulate(3)(a => a + 5) res0: Array[Int] = Array(5, 6, 7) 14 def tabulate[T]( n1: Int, n2: Int )( f: (Int, Int ) => T): Array[Array[T]] 返回指定长度的二维数组,每个数组元素为指定函数的返回值,默认从 0 开始。
了解 Python 集合: 它们是什么,如何创建它们,何时使用它们,什么是内置函数,以及它们与集合论操作的关系
原链接:https://www.jianshu.com/p/273108804cef
领取专属 10元无门槛券
手把手带您无忧上云