首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

干货!直观地解释和可视化每个复杂的DataFrame操作

Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。...我们选择一个ID,一个维度和一个包含值的列/列。包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ?...结果是ID列的值(a,b,c)和值列(B,C)及其对应值的每种组合,以列表格式组织。 可以像在DataFrame df上一样执行Mels操作 : ?...作为另一个示例,当级别设置为0(第一个索引级别)时,其中的值将成为列,而随后的索引级别(第二个索引级别)将成为转换后的DataFrame的索引。 ?...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。

13.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas数据分析

    默认情况下,它会考虑所有列,如果只想根据某些列删除重复项,可以将这些列名作为参数传递给subset参数 movie3.drop_duplicates(subset='title_year',keep='...# False:删除所有重复项 数据连接(concatenation) 连接是指把某行或某列追加到数据中 数据被分成了多份可以使用连接把数据拼接起来 把计算的结果追加到现有数据集,可以使用连接 import...',join = 'outer') pd.concat([df1,df2,df3],ignore_index=True) 也可以使用concat函数添加列,与添加行的方法类似,需要多传一个axis参数...axis的默认值是index 按行添加 向DataFrame添加一列,不需要调用函数,通过dataframe['列名'] = ['值'] 即可 通过dataframe['列名'] = Series对象...可以垂直和水平地连接两个或多个pandas对象 只用索引对齐 默认是外连接(也可以设为内连接) merge: DataFrame方法 只能水平连接两个DataFrame对象 对齐是靠被调用的DataFrame的列或行索引和另一个

    11910

    Python进阶之Pandas入门(三) 最重要的数据流操作

    在这里,我们可以看到每一列的名称、索引和每行中的值示例。 您将注意到,DataFrame中的索引是Title列,您可以通过单词Title比其他列稍微低一些的方式看出这一点。...、非空值的数量、每个列中的数据类型以及DataFrame使用了多少内存。...请注意,在我们的movies数据集中,Revenue和Metascore列中有一些明显的缺失值。我们将在下一讲中处理这个问题。 快速查看数据类型实际上非常有用。...另一个快速而有用的属性是.shape,它只输出一个元组(行、列): print (movies_df.shape) 运行结果: (1000, 11) 注意,.shape没有括号,它是一个简单的格式元组(...为了演示,让我们简单地把我们的movies DataFrame加倍,将它附加到自身: temp_df = movies_df.append(movies_df) print (temp_df.shape

    2.7K20

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    方法将行追加到数据帧。...列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...接下来,我们使用 pd.concat 方法将 3 行 ['John', 25]、['Mary', 30]、['Peter', 28] 附加到数据帧。...然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。“城市”列的列值作为列表传递。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。

    28030

    合并Pandas的DataFrame方法汇总

    如果不想显示该列,可以将user_id 列设置为两列上的索引,以便在联接时不带后缀: df_join_no_duplicates = df1.set_index('user_id').join(df2....将df2 追加到 df1 并打印结果: df_append = df1.append(df2, ignore_index=True) print(df_append) 使用append()将不匹配任何键上的...DataFrames ,它只将另一个DataFrame添加到第一个DataFrame并返回它的副本。...如果设置为 True ,它将忽略原始值并按顺序重新创建索引值 keys:用于设置多级索引,可以将它看作附加在DataFrame左外侧的索引的另一个层级的索引,它可以帮助我们在值不唯一时区分索引 用与 df2...即在1轴方向上合并)将两个DataFrames连接在一起,要将axis值从默认值0更改为1: df_column_concat = pd.concat([df1, df_row_concat], axis

    5.7K10

    快速介绍Python数据分析库pandas的基础知识和代码示例

    注意:还有另一个类似的函数pd。read_excel用于excel文件。...在本例中,将新行初始化为python字典,并使用append()方法将该行追加到DataFrame。...NaN(非数字的首字母缩写)是一个特殊的浮点值,所有使用标准IEEE浮点表示的系统都可以识别它 pandas将NaN看作是可互换的,用于指示缺失值或空值。...我们将调用pivot_table()函数并设置以下参数: index设置为 'Sex',因为这是来自df的列,我们希望在每一行中出现一个唯一的值 values值为'Physics','Chemistry...类似地,我们可以使用df.min()来查找每一行或每列的最小值。 其他有用的统计功能: sum():返回所请求的轴的值的总和。默认情况下,axis是索引(axis=0)。

    8.1K20

    Pandas速查卡-Python数据科学

    (1,'one') 将所有等于1的值替换为'one' s.replace([1,3],['one','three']) 将所有1替换为'one',将3替换为'three' df.rename(columns...将col2按降序对值排序 df.sort_values([col1,ascending=[True,False]) 将col1按升序排序,然后按降序排序col2 df.groupby(col) 从一列返回一组对象的值...加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同) df.concat([df1, df2],axis=1) 将df1中的列添加到df2的末尾(行数应该相同...) df1.join(df2,on=col1,how='inner') SQL类型的将df1中的列与df2上的列连接,其中col的行具有相同的值。...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

    9.2K80

    【数据处理包Pandas】DataFrame对象的合并

    pd.concat既可以行合并,也可以列合并;并且沿着哪个轴合并,合并对象上该轴的索引将全部保留;例如按行合并(对应于axis=0),此时参与合并的所有 DataFrame 对象的行索引则全部保留,并且由上到下按序排列...inner'时,将取交集计算结果(类似于SQL的内连接)。...一对一连接:在起连接作用的关键列(employee)上,通过列值匹配进行合并。 pd.merge(df3, df4) concat并没有基于两个employee列的相同值匹配进行合并。...pd.merge(df3, df5,on='group') 当两个 DataFrame 的关键列的列名不同时,需要使用left_on和right_on参数实现列值匹配。...'', sort=False) other:要连接的另一个 DataFrame 或 Series 对象。

    9500

    30 个小例子帮你快速掌握Pandas

    通过将isna与sum函数一起使用,我们可以看到每列中缺失值的数量。 df.isna().sum() ? 6.使用loc和iloc添加缺失值 我正在做这个例子来练习loc和iloc。...让我们做另一个使用索引而不是标签的示例。 df.iloc [missing_index,-1] = np.nan "-1"是最后一列Exit的索引。...8.删除缺失值 处理缺失值的另一种方法是删除它们。“已退出”列中仍缺少值。以下代码将删除缺少任何值的行。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。...我已经将虚构名称添加到df_new DataFrame中。 ? 让我们选择客户名称以Mi开头的行。 我们将使用str访问器的startswith方法。

    10.8K10

    Pandas速查手册中文版

    ():检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna():删除所有包含空值的行 df.dropna(axis=1):删除所有包含空值的列 df.dropna(axis...=1,thresh=n):删除所有小于n个非空值的行 df.fillna(x):用x替换DataFrame对象中所有的空值 s.astype(float):将Series中的数据类型更改为float类型...1):对DataFrame中的每一行应用函数np.max 数据合并 df1.append(df2):将df2中的行添加到df1的尾部 df.concat([df1, df2],axis=1):将df2中的列添加到...df1的尾部 df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join 数据统计 df.describe():查看数据值列的汇总统计 df.mean...():返回所有列的均值 df.corr():返回列与列之间的相关系数 df.count():返回每一列中的非空值的个数 df.max():返回每一列的最大值 df.min():返回每一列的最小值 df.median

    12.2K92

    Python数据可视化,完整版操作指南(建议收藏)

    我们将只使用熊猫来查看数据并了解其分布方式。 我们要做的第一件事是可视化一些示例,查看这些示例包含了哪些列、哪些信息以及如何对值进行编码等等。...使用命令描述,我们将看到数据如何分布,最大值,最小值,均值…… df.describe() ? 使用info命令,我们将看到每列包含的数据类型。...我们可以发现一列的情况,当使用head命令查看时,该列似乎是数字的,但是如果我们查看后续数据,则字符串格式的值将被编码为字符串。 df.info() ?...如果您使用的是Jupyter Notebook,则在制作图表之前,将%matplotlib内联添加到文件的开头并运行它。 我们可以在一个图形中制作多个图形。...另一个最受欢迎的是配对图,它向我们显示了所有变量之间的关系。如果您有一个大数据集,请谨慎使用此功能,因为它必须显示所有数据点的次数与有列的次数相同,这意味着通过增加数据的维数,处理时间将成倍增加。

    1.9K31

    8000 字 Python 数据可视化实操指南

    我们将只使用熊猫来查看数据并了解其分布方式。 我们要做的第一件事是可视化一些示例,查看这些示例包含了哪些列、哪些信息以及如何对值进行编码等等。...,我们将看到数据如何分布,最大值,最小值,均值…… df.describe() 结果如下: 使用info命令,我们将看到每列包含的数据类型。...我们可以发现一列的情况,当使用head命令查看时,该列似乎是数字的,但是如果我们查看后续数据,则字符串格式的值将被编码为字符串。...如果您使用的是Jupyter Notebook,则在制作图表之前,将%matplotlib内联添加到文件的开头并运行它。 我们可以在一个图形中制作多个图形。...['Mes'], df['data science'], legend='popularity', line_width=2) save(p) 结果如下: 将多个图形添加到单个文件: output_file

    1.4K20

    《Python for Excel》读书笔记连载11:使用pandas进行数据分析之组合数据

    在下面的示例中,创建了另一个数据框架more_users,并将其附加到示例数据框架df的底部: 注意,现在有了重复的索引元素,因为concat将数据粘在指定的轴(行)上,并且只对齐另一个轴(列)上的数据...如果要沿列将两个数据框架粘合在一起,设置axis=1: concat的特殊和非常有用的特性是它接受两个以上的数据框架。...联接(joining)和合并(merging) 当联接(join)两个数据框架时,可以将每个数据框架的列组合成一个新的数据框架,同时依靠集理论来决定行的情况。...左联接(leftjoin)获取左数据框架df1中的所有行,并在索引上匹配右数据框架df2中的行,在df2没有匹配行的地方,pandas将填充NaN。左联接对应于Excel中的VLOOKUP情况。...最后,外联接(outerjoin)是完全外联接(fullouter join)的缩写,它从两个数据框架中获取索引的并集,并尽可能匹配值。表5-5相当于图5-3的文本形式。

    2.5K20

    总结了67个pandas函数,完美解决数据处理,拿来即用!

    Series对象的唯⼀值和计数 df.apply(pd.Series.value_counts) # 查看DataFrame对象中每⼀列的唯⼀值和计数 df.isnull().any() # 查看是否有缺失值...() # 检查DataFrame对象中的⾮空值,并返回⼀个Boolean数组 df.dropna() # 删除所有包含空值的⾏ df.dropna(axis=1) # 删除所有包含空值的列 df.dropna...(x) s.astype(float) # 将Series中的数据类型更改为float类型 s.replace(1,'one') # ⽤‘one’代替所有等于1的值 s.replace([1,3]...、最⼩值的数据透视表 df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,⽀持 df.groupby(col1).col2.agg(['min','max...df1.append(df2) # 将df2中的⾏添加到df1的尾部 df.concat([df1,df2],axis=1,join='inner') # 将df2中的列添加到df1的尾部,值为空的对应

    3.5K30
    领券