首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

保存并加载您的Keras深度学习模型

在本文中,您将发现如何将Keras模型保存到文件中,并再次加载它们来进行预测。 让我们开始吧。 2017/03更新:添加了首先安装h5py的说明。...可以使用两种不同的格式来描述和保存模型结构:JSON和YAML。 在这篇文章中,我们将会看到两个关于保存和加载模型文件的例子: 将模型保存到JSON。 将模型保存到YAML。...Keras提供了使用带有to_json()函数的JSON格式它有描述任何模型的功能。它可以保存到文件中,然后通过从JSON参数创建的新模型model_from_json()函数加载。...然后将该模型转换为JSON格式并写入本地目录中的model.json。网络权重写入本地目录中的model.h5。 从保存的文件加载模型和权重数据,并创建一个新的模型。...你了解了如何将训练的模型保存到文件中,然后将它们加载并使用它们进行预测。 你还了解到,模型权重很容易使用HDF5格式存储,而网络结构可以以JSON或YAML格式保存。

2.9K60

Keras学习笔记(七)——如何保存、加载Keras模型?如何单独保存加载权重、结构?

你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含: 模型的结构,允许重新创建模型 模型的权重 训练配置项(损失函数,优化器) 优化器状态...2.只保存/加载模型的结构 如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作: # 保存为 JSON json_string = model.to_json() # 保存为 YAML...yaml_string = model.to_yaml() 生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。...你可以从这些数据建立一个新的模型: # 从 JSON 重建模型: from keras.models import model_from_json model = model_from_json(json_string...只保存/加载模型的权重 如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。 请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。

5.9K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tensorflow2——模型的保存和恢复

    模型的保存和恢复 1、保存整个模型 2、仅仅保存模型的架构(框架) 3、仅仅保存模型的权重 4、在训练期间保存检查点 1、保存整个模型 1)整个模型保存到一个文件中,其中包含权重值,模型配置以及优化器的配置...new_model=tf.keras.models.load_model("less_model.h5") #既保存了模型的框架,也保存了模型的权重 new_model.summary() Model...(框架) 有时候我们只对模型的架构感兴趣,而无需保存权重值或者是优化器,在这种情况下,可以仅仅保存模型的配置 模型的整体的架构情况,返回一个json数据,就是一个模型的架构 json_config=model.to_json...() #重建这个模型 reinitialized_model=tf.keras.models.model_from_json(json_config) reinitialized_model.summary...,也就是他的权重,只是保存了网络的架构 3、仅仅保存模型的权重 时候我们只需要保存模型的状态(其权重值),而对模型的架构不感兴趣,在这种情况下,可以通过get_weights()来获取权重值,并通过set_weights

    1K20

    Keras和PyTorch的视觉识别与迁移学习对比

    4.训练模型 ? 我们继续进行最重要的一步 – 模型训练。我们需要传递数据,计算损失函数并相应地修改网络权重。虽然Keras和PyTorch在数据增强方面已经存在一些差异,但代码长度差不多。...一般来说,有两种类型保存: 将整个模型结构和训练权重(以及优化器状态)保存到文件中, 将训练过的权重保存到文件中(将模型架构保留在代码中)。 你可以随意选择。在这里,我们保存模型。...在Keras中,可以将所有内容保存到HDF5文件,或将权重保存到HDF5,并将架构保存到可读的json文件中。另外,你可以加载模型并在浏览器中运行它。 目前,PyTorch创建者建议仅保存权重。...他们不鼓励保存整个模型,因为API仍在不断发展。 加载 加载模型和保存一样简单。你需要记住你选择的保存方法和文件路径。...中,我们可以从JSON文件加载模型,而不是在Python中创建它(至少在我们不使用自定义层时不需要这样)。

    4.6K40

    TensorFlow2.0(12):模型保存与序列化

    save()方法可以将模型保存到一个指定文件中,保存的内容包括: 模型的结构 模型的权重参数 通过compile()方法配置的模型训练参数 优化器及其状态 model.save('mymodels/mnist.h5...需要使用模型时,通过keras.models.load_model()方法从文件中再次加载即可。...我们仅对部分信息感兴趣,例如仅对模型的权重参数感兴趣,那么就可以通过save_weights()方法进行保存。...model.save_weights('mymodels/mnits_weights') # 保存模型权重信息 new_model = Sequential([ # 创建新的模型 layers.Dense...()) new_model.load_weights('mymodels/mnits_weights') # 将保存好的权重信息加载的新的模型中 <tensorflow.python.training.tracking.util.CheckpointLoadStatus

    1.8K10

    如何为Keras中的深度学习模型建立Checkpoint

    Keras库通过回调API提供Checkpoint功能。 ModelCheckpoint回调类允许你定义检查模型权重的位置在何处,文件应如何命名,以及在什么情况下创建模型的Checkpoint。...Checkpoint最佳神经网络模型 如果验证精度提高的话,一个更简单的Checkpoint策略是将模型权重保存到相同的文件中。...这也可以序列化成JSON或YAML格式。 在下面的示例中,模型结构是已知的,并且最好的权重从先前的实验中加载,然后存储在weights.best.hdf5文件的工作目录中。...Checkpoint最佳神经网络模型 如果验证精度提高的话,一个更简单的Checkpoint策略是将模型权重保存到相同的文件中。...这也可以序列化成JSON或YAML格式。 在下面的示例中,模型结构是已知的,并且最好的权重从先前的实验中加载,然后存储在weights.best.hdf5文件的工作目录中。

    14.9K136

    keras doc 4 使用陷阱与模型

    向BN层中载入权重 如果你不知道从哪里淘来一个预训练好的BN层,想把它的权重载入到Keras中,要小心参数的载入顺序。...,而mean和std不是 Keras的可训练参数在前,不可训练参数在后 错误的权重顺序不会引起任何报错,因为它们的shape完全相同 shuffle和validation_split的顺序 模型的fit...model.to_json:返回代表模型的JSON字符串,仅包含网络结构,不包含权值。...yaml_string = model.to_yaml() model = model_from_yaml(yaml_string) model.save_weights(filepath):将模型权重保存到指定路径...,文件类型是HDF5(后缀是.h5) model.load_weights(filepath, by_name=False):从HDF5文件中加载权重到当前模型中, 默认情况下模型的结构将保持不变。

    1.2K10

    Deep learning基于theano的keras学习笔记(0)-keras常用的代码

    一般使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含: 模型的结构,以便重构该模型 模型的权重 训练配置(损失函数,优化器等) 优化器的状态,以便于从上次训练中断的地方开始...使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译,例子如下: from keras.models...如果你只是希望保存模型的结构,而不包含其权重或配置信息,可以使用: # save as JSON json_string = model.to_json() # save as YAML yaml_string...= model.to_yaml() 当然,你也可以从保存好的json文件或yaml文件中载入模型: # model reconstruction from JSON: from keras.models...如果需要保存模型的权重,可通过下面的代码利用HDF5进行保存。

    90010

    扶稳!四大步“上手”超参数调优教程,就等你出马了 | 附完整代码

    Keras 简介 Keras 是一个深度学习的 Python 库,它旨在快速简便地开发深度学习模型。Keras 建立在模型的基础上。...常用的回调函数如下: keras.callbacks.History() 记录模型训练的历史信息,该函数默认包含在 .fit() 中 keras.callbacks.ModelCheckpoint()将模型的权重保存在训练中的某个节点...Learning rate 控制每个 batch 结束时的模型权重,momentum控制先前权重更新对当前权重更新的影响程度,decay表示每次更新时的学习率衰减,nesterov 用于选择是否要使用...将模型保存到 JSON 文件中 分层数据格式(HDF5)是用于存储大数组的数据存储格式,这包括神经网络中权重的值。...HDF5 的安装可以使用如下命令 :pip install h5py Keras 使用JSON格式保存模型的代码如下: from keras.models import model_from_json

    1.7K40

    Keras模型转TensorFlow格式及使用

    由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow...Keras模型转TensorFlow 其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少...模型是一个包含了网络结构和权重的h5文件,那么使用下面的命令就可以了: python keras_to_tensorflow.py --input_model="path/to/keras/model.h5...此外作者还做了很多选项,比如如果你的keras模型文件分为网络结构和权重两个文件也可以支持,或者你想给转化后的网络节点编号,或者想在TensorFlow下继续训练等等,这份代码都是支持的,只是使用上需要输入不同的参数来设置...另外还告诉你冻结了多少个变量,以及你输出的模型路径,pb文件就是TensorFlow下的模型文件。

    1.2K20

    Keras介绍

    与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描述,使其更紧凑和更易debug,并提供了扩展的便利性。...在Keras 的源代码的examples 文件夹里还有更多的例子,有兴趣的读者可以参参。  3 Keras 的使用  我们下载Keras 代码①到本地目录,将下载后的目录命名为keras。...3.模型的加载及保存  Keras 的save_model 和load_model 方法可以将Keras 模型和权重保存在一个HDF5 文件中,  这里面包括模型的结构、权重、训练的配置(损失函数、优化器...,而不包含其权重及训练的配置(损失函数、优化器),可  以使用下面的代码将模型序列化成json 或者yaml 文件:  json_string = model.to_json()  json_string...(json_string)  model = model_from_yaml(yaml_string)  如果仅需要保存模型的权重,而不包含模型的结构,可以使用save_weights 和load_weights

    1.1K20

    教程 | 用摄像头和Tensorflow.js在浏览器上实现目标检测

    所以我们的第一步就是将 YOLO 模型转换为更加 Tensorflow 式的东西,在我们的例子中,这个东西是 Keras。Keras 是一个更高级的深度学习框架。...现在在你的电脑终端运行下列指令。这些指令会下载 Tiny YOLO 权重以及配置文件同时会将转换后的模型文件输出到 model_data/yolov2-tiny.h5。...注意,那个文件夹还包含了 model.json 以及一些其他的碎片文件。model.json 告诉 Tensorflow.js 神经网络的结构是怎样的以及哪些碎片文件与哪些权重相对应。...这些碎片文件包含了模型的权重。要保证这些碎片文件和 model.json 在同一个目录下,不然你的模型将会无法正确加载。 Tensorflow.js 现在,我们到了有趣的部分。...你可以使用此处的托管模型文件(https://raw.githubusercontent.com/MikeShi42/yolo-tiny-tfjs/master/model2.json)或者把路径加到你转换后的文件中去

    2.3K41

    keras系列︱Sequential与Model模型、keras基本结构功能(一)

    模型,用去其他训练,fine-tuning比较好用 5、 模型概况查询(包括权重查询) # 1、模型概括打印 model.summary() # 2、返回代表模型的JSON字符串,仅包含网络结构,不包含权值...# 查看model中Layer的信息 model.layers 查看layer信息 6、模型保存与加载 model.save_weights(filepath) # 将模型权重保存到指定路径,文件类型是...HDF5(后缀是.h5) model.load_weights(filepath, by_name=False) # 从HDF5文件中加载权重到当前模型中, 默认情况下模型的结构将保持不变。...# 如果想将权重载入不同的模型(有些层相同)中,则设置by_name=True,只有名字匹配的层才会载入权重 . 7、如何在keras中设定GPU使用的大小 本节来源于:深度学习theano/tensorflow...tensorboard write_images: 是否将模型权重以图片的形式可视化 其他内容可参考keras中文文档 .

    10.2K124
    领券