首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用 Spark | 手把手带你十步轻松拿下 Spark SQL 使用操作

1 DataSet 及 DataFrame 的创建 在《20张图详解 Spark SQL 运行原理及数据抽象》的第 4 节“Spark SQL 数据抽象”中,我们认识了 Spark SQL 中的两种数据抽象...读取数据库数据源 Spark SQL 支持通过 JDBC 读取外部数据库的数据作为数据源。...4.4 读取数据源,加载数据(RDD 转 DataFrame) 读取上传到 HDFS 中的广州二手房信息数据文件,分隔符为逗号,将数据加载到上面定义的 Schema 中,并转换为 DataFrame 数据集...展示加载的数据集结果 由于数据加载到 Schema 中为 RDD 数据集,需要用 toDF 转换为 DataFrame 数据集,以使用 Spark SQL 进行查询。...4.10 使用 SQL 风格进行连接查询 读取上传到 HDFS 中的户型信息数据文件,分隔符为逗号,将数据加载到定义的 Schema 中,并转换为 DataSet 数据集: case class Huxing

8.8K51

2021年大数据Spark(三十二):SparkSQL的External DataSource

---- External DataSource 在SparkSQL模块,提供一套完成API接口,用于方便读写外部数据源的的数据(从Spark 1.4版本提供),框架本身内置外部数据源: 在Spark...方法底层还是调用text方法,先加载数据封装到DataFrame中,再使用as[String]方法将DataFrame转换为Dataset,实际中推荐使用textFile方法,从Spark 2.0开始提供...        val mlRatingsDF: DataFrame = spark.read             // 设置每行数据各个字段之间的分隔符, 默认值为 逗号             ...由于SparkSQL没有内置支持从HBase表中加载和保存数据,但是只要实现外部数据源接口,也能像上面方式一样读取加载数据。 ​​​​​​​...{DataFrame, SaveMode, SparkSession} /**  * Author itcast  * Desc 先准备一个df/ds,然后再将该df/ds的数据写入到不同的数据源中,

2.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PySpark 读写 CSV 文件到 DataFrame

    本文中,云朵君将和大家一起学习如何将 CSV 文件、多个 CSV 文件和本地文件夹中的所有文件读取到 PySpark DataFrame 中,使用多个选项来更改默认行为并使用不同的保存选项将 CSV 文件写回...("path"),在本文中,云朵君将和大家一起学习如何将本地目录中的单个文件、多个文件、所有文件读入 DataFrame,应用一些转换,最后使用 PySpark 示例将 DataFrame 写回 CSV...注意: 开箱即用的 PySpark 支持将 CSV、JSON 和更多文件格式的文件读取到 PySpark DataFrame 中。...此示例将数据读取到 DataFrame 列"_c0"中,用于第一列和"_c1"第二列,依此类推。...,path3") 1.3 读取目录中的所有 CSV 文件 只需将目录作为csv()方法的路径传递给该方法,我们就可以将目录中的所有 CSV 文件读取到 DataFrame 中。

    1.1K20

    浅谈pandas,pyspark 的大数据ETL实践经验

    数据接入 我们经常提到的ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,首先第一步就是根据不同来源的数据进行数据接入,主要接入方式有三: 1.批量数据 可以考虑采用使用备份数据库导出...ETL 中的E—-EXTRACT(抽取),接入过程中面临多种数据源,不同格式,不同平台,数据吞吐量,网络带宽等多种挑战。...脏数据的清洗 比如在使用Oracle等数据库导出csv file时,字段间的分隔符为英文逗号,字段用英文双引号引起来,我们通常使用大数据工具将这些数据加载成表格的形式,pandas ,spark中都叫做...如果其中有值为None,Series会输出None,而DataFrame会输出NaN,但是对空值判断没有影响。...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。

    3K30

    Spark SQL实战(07)-Data Sources

    0 相关源码 sparksql-train 1 概述 Spark SQL通过DataFrame接口支持对多种数据源进行操作。 DataFrame可使用关系型变换进行操作,也可用于创建临时视图。...将DataFrame注册为临时视图可以让你对其数据运行SQL查询。 本节介绍使用Spark数据源加载和保存数据的一般方法,并进一步介绍可用于内置数据源的特定选项。...Spark能处理多种数据源的数据,而且这些数据源可在不同地方: file/HDFS/S3/OSS/COS/RDBMS json/ORC/Parquet/JDBC object DataSourceApp...lineSep:如果指定,则使用指定的字符串作为行分隔符。 pathGlobFilter:用于筛选文件的通配符模式。 recursiveFileLookup:是否递归查找子目录中的文件。...第二次也会报错输出目录已存在 这关系到 Spark 中的 mode SaveMode Spark SQL中,使用DataFrame或Dataset的write方法将数据写入外部存储系统时,使用“SaveMode

    93640

    Spark SQL实战(04)-API编程之DataFrame

    除了支持SQLContext的数据源外,还支持Hive的数据源。...因此,如果需要访问Hive中的数据,需要使用HiveContext。 元数据管理:SQLContext不支持元数据管理,因此无法在内存中创建表和视图,只能直接读取数据源中的数据。...n行数据的数组 该 API 可能导致数据集的全部数据被加载到内存,因此在处理大型数据集时应该谨慎使用。...通过调用该实例的方法,可以将各种Scala数据类型(如case class、元组等)与Spark SQL中的数据类型(如Row、DataFrame、Dataset等)之间进行转换,从而方便地进行数据操作和查询...因为在进行DataFrame和Dataset的操作时,需要使用到一些隐式转换函数。如果没有导入spark.implicits.

    4.2K20

    tsv文件在大数据技术栈里的应用场景

    是的,\t 是指制表符(tab),它通常用作字段分隔符在 TSV(Tab-Separated Values)格式的文件中。...以下是一些TSV文件在大数据技术栈中的应用场景: 数据导入:在大数据平台中,TSV文件常用于数据的导入操作,例如可以将TSV文件导入Hadoop的HDFS系统或者数据库系统如Hive中进行存储和处理。...Spark数据处理:Apache Spark可以读写TSV文件,并在Spark SQL中对其进行转换处理,例如使用DataFrame API。...如果需要,也可以使用LOAD DATA语句将数据从一个HDFS位置加载到表中。...在MapReduce中,你需要编写相应的Mapper和Reducer来解析TSV格式,并在Spark中,可以使用Spark SQL的DataFrame或Dataset API进行数据加载和转换。

    15200

    浅谈pandas,pyspark 的大数据ETL实践经验

    数据接入 我们经常提到的ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,首先第一步就是根据不同来源的数据进行数据接入,主要接入方式有三: 1.批量数据 可以考虑采用使用备份数据库导出...中的E----EXTRACT(抽取),接入过程中面临多种数据源,不同格式,不同平台,数据吞吐量,网络带宽等多种挑战。...脏数据的清洗 比如在使用Oracle等数据库导出csv file时,字段间的分隔符为英文逗号,字段用英文双引号引起来,我们通常使用大数据工具将这些数据加载成表格的形式,pandas ,spark中都叫做...如果其中有值为None,Series会输出None,而DataFrame会输出NaN,但是对空值判断没有影响。...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。

    5.5K30

    我说Java基础重要,你不信?来试试这几个问题

    它不仅能像 javac 工具那样将一组源文件编译成字节码文件,还可以对一些 Java 表达式,代码块,类中的文本(class body)或者内存中源文件进行编译,并把编译后的字节码直接加载到同一个 JVM...目前,绝大多数的大数据计算框架都是基于JVM实现的,为了快速地计算数据,需要将数据加载到内存中进行处理。...当大量数据需要加载到内存中时,如果使用Java序列化方式来存储对象,占用的空间会较大降低存储传输效率。...那我问问Spark SQL将RDD转换为DataFrame如何实现的不过分吧?...Spark SQL支持将现有RDDS转换为DataFrame的两种不同方法,其实也就是隐式推断或者显式指定DataFrame对象的Schema。

    75130

    SparkDSL修改版之从csv文件读取数据并写入Mysql

    ,需要使用事实表数据和维度表数据关联,所以先数据拉宽,再指标计算 TODO: 按照数据仓库分层理论管理数据和开发指标 - 第一层(最底层):ODS层 直接加CSV文件数据为DataFrame..., verbose = false) // step3、【DW层】:将电影评分数据与电影信息数据进行关联,数据拉宽操作 // val detailDF: DataFrame = joinDetail...", current_timestamp()) } /** * 将DataFrame数据集打印控制台,显示Schema信息和前10条数据 */ def printConsole(dataframe...= false) } /** * 将数据保存至MySQL表中,采用replace方式,当主键存在时,更新数据;不存在时,插入数据 * @param dataframe 数据集 *...插入数据 iter.foreach{row => // 设置SQL语句中占位符的值 accept(pstmt, row) // 加入批次中 pstmt.addBatch

    1.8K10

    PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...注意: 开箱即用的 PySpark API 支持将 JSON 文件和更多文件格式读取到 PySpark DataFrame 中。...与读取 CSV 不同,默认情况下,来自输入文件的 JSON 数据源推断模式。 此处使用的 zipcodes.json 文件可以从 GitHub 项目下载。....json']) df2.show() 读取目录中的所有文件 只需将目录作为json()方法的路径传递给该方法,我们就可以将目录中的所有 JSON 文件读取到 DataFrame 中。

    1.1K20

    2021年大数据Spark(二十五):SparkSQL的RDD、DF、DS相关操作

    ---- RDD、DF、DS相关操作 SparkSQL初体验 Spark 2.0开始,SparkSQL应用程序入口为SparkSession,加载不同数据源的数据,封装到DataFrame/Dataset...()   } } 使用SparkSession加载数据源数据,将其封装到DataFrame或Dataset中,直接使用show函数就可以显示样本数据(默认显示前20条)。...SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并且支持把DataFrame转换成SQLContext自身中的表,然后使用SQL语句来操作数据。...指定类型+列名 除了上述两种方式将RDD转换为DataFrame以外,SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用...转为DataFrame(DF)并指定列名     //注意:RDD的API中没有toDF方法,需要导入隐式转换!

    1.3K30

    使用CDSW和运营数据库构建ML应用2:查询加载数据

    如果您用上面的示例替换上面示例中的目录,table.show()将显示仅包含这两列的PySpark Dataframe。...使用hbase.columns.mapping 同样,我们可以使用hbase.columns.mapping将HBase表加载到PySpark数据帧中。...() 执行result.show()将为您提供: 使用视图的最大优势之一是查询将反映HBase表中的更新数据,因此不必每次都重新定义和重新加载df即可获取更新值。...首先,将2行添加到HBase表中,并将该表加载到PySpark DataFrame中并显示在工作台中。然后,我们再写2行并再次运行查询,工作台将显示所有4行。...” java.lang.ClassNotFoundException:无法找到数据源:org.apache.hadoop.hbase.spark。

    4.1K20

    Spark SQL

    Spark SQL增加了DataFrame(即带有Schema信息的RDD),使用户可以在Spark SQL中执行SQL语句,数据既可以来自RDD,也可以是Hive、HDFS、Cassandra等外部数据源...Spark SQL填补了这个鸿沟: 首先,可以提供DataFrame API,可以对内部和外部各种数据源执行各种关系型操作 其次,可以支持大数据中的大量数据源和数据分析算法 Spark SQL可以融合:...SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并且支持把DataFrame转换成SQLContext自身中的表,然后使用SQL语句来操作数据。...Andy, 30 Justin, 19 现在要把people.txt加载到内存中生成一个DataFrame,并查询其中的数据。...Spark SQL可以支持Parquet、JSON、Hive等数据源,并且可以通过JDBC连接外部数据源。

    8210

    SparkSQL快速入门系列(6)

    1.2 ●Spark SQL 的特点 1.易整合 可以使用java、scala、python、R等语言的API操作。 2.统一的数据访问 连接到任何数据源的方式相同。...DataSet包含了DataFrame的功能, Spark2.0中两者统一,DataFrame表示为DataSet[Row],即DataSet的子集。...HDFS上: hadoop fs -put /root/person.txt / 2.在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割 打开spark-shell...转成DF //注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换 import spark.implicits._ val personDF: DataFrame...() } } 第四章 Spark SQL多数据源交互 Spark SQL可以与多种数据源交互,如普通文本、json、parquet、csv、MySQL等 1.写入不同数据源 2.读取不同数据源 4.1

    2.4K20

    Spark SQL 快速入门系列(7) | SparkSQL如何实现与多数据源交互

    Spark SQL 的DataFrame接口支持操作多种数据源. 一个 DataFrame类型的对象可以像 RDD 那样操作(比如各种转换), 也可以用来创建临时表.   ...1.2 保存到本地   默认数据源是parquet, 我们也可以通过使用:spark.sql.sources.default这个属性来设置默认的数据源. val usersDF = spark.read.load...说明: spark.read.load 是加载数据的通用方法. df.write.save 是保存数据的通用方法. 1. 手动指定选项   也可以手动给数据源指定一些额外的选项....数据源应该用全名称来指定, 但是对一些内置的数据源也可以使用短名称:json, parquet, jdbc, orc, libsvm, csv, text val peopleDF = spark.read.format...注意:   Parquet格式的文件是 Spark 默认格式的数据源.所以, 当使用通用的方式时可以直接保存和读取.而不需要使用format   spark.sql.sources.default 这个配置可以修改默认数据源

    1.4K20

    我们的产品架构

    整体架构 我们的产品代号为Mort(这个代号来自电影《马达加斯加》那只萌萌的大眼猴),是基于大数据平台的商业智能(BI)产品。产品架构如下所示: ? 我们选择了Spark作为我们的大数据分析平台。...这是我们暂时没有考虑升级1.6的主因。...因此,我们的产品写了一个简单的语法Parser,用以组装Spark SQL的SQL语句,用以执行分析,最后将DataFrame转换为我们期待的数据结构返回给前端。...我们考虑在将来会调整方案,直接将客户定制的聚合操作解析为对DataFrame的API调用(可能会使用新版本Spark的DataSet)。...微服务架构 我们的产品需要支持多种数据源,对数据源的访问是由另外一个standalone的服务CData完成的,通过它可以隔离这种数据源的多样性。

    94930

    基于 Spark 的数据分析实践

    SparkSQL 中一切都是 DataFrame,all in DataFrame. DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...如果熟悉 Python Pandas 库中的 DataFrame 结构,则会对 SparkSQL DataFrame 概念非常熟悉。...(_.split(",")) //将表结构和数据关联起来,把读入的数据user.csv映射成行,构成数据集 valrowRDD = lines.map(x=>Row(x(0),x(1),x(2),x(...基于 SparkSQL Flow 的架构主要侧重批量数据分析,非实时 ETL 方面。 问2:这些应该是源数据库吧,请问目标数据库支持哪些? 答:目前的实现目标数据基本支持所有的源。...在参与部分项目实施过程中,通过对一些开发中的痛点针对性的提取了应用框架。 问4:对于ETL中存在的merge、update的数据匹配、整合处理,Spark SQL Flow有没有好的解决方法?

    1.8K20

    Spark(RDD,CSV)创建DataFrame方式

    spark将RDD转换为DataFrame 方法一(不推荐) spark将csv转换为DataFrame,可以先文件读取为RDD,然后再进行map操作,对每一行进行分割。...) df.show(3) 这里的RDD是通过读取文件创建的所以也可以看做是将RDD转换为DataFrame object HttpSchema { def parseLog(x:String...,因为返回的Row中的字段名要与schema中的字段名要一致,当字段多于22个这个需要集成一个 2.方法二 //使用隐式转换的方式来进行转换 val spark = SparkSession...","分割 .save(outpath) sparkContext.stop() sparkContext.sql()操作完成后直接返回的是DataFrame 当然可以间接采用将...csv直接转换为RDD然后再将RDD转换为DataFrame 2.方法二 // 读取数据并分割每个样本点的属性值 形成一个Array[String]类型的RDD val rdd = sc.textFile

    1.5K10

    Spark SQL 外部数据源

    一、简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景。...lz4, or snappyNone压缩文件格式ReadmergeSchematrue, false取决于配置项 spark.sql.parquet.mergeSchema当为真时,Parquet 数据源将所有数据文件收集的...但是 Spark 程序默认是没有提供数据库驱动的,所以在使用前需要将对应的数据库驱动上传到安装目录下的 jars 目录中。...这意味着当您从一个包含多个文件的文件夹中读取数据时,这些文件中的每一个都将成为 DataFrame 中的一个分区,并由可用的 Executors 并行读取。...指定是否应该将所有值都括在引号中,而不只是转义具有引号字符的值。

    2.4K30
    领券