首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python-Numpy数组计算

,与列表的区别是:  数组对象内的元素类型必须相同数组大小不可修改 3、常用属性:  T 数组的转置(对高维数组而言)dtype 数组元素的数据类型size 数组元素的个数ndim 数组的维数shape...__len__()-1] numpy.reshape(a,b)                  将a*b的一维数组排列为a*b的形式 array([a,b,c,d],[d,e,f,g])         ...【解决方法:copy()】  六、NumPy:布尔型索引  问题:给一个数组,选出数组中所有大于5的数。   ...argmin 求最小值索引argmax 求最大值索引 十一、NumPy:随机数生成  随机数生成函数在np.random子包内 常用函数    rand 给定形状产生随机数组(0到1之间的数)randint...给定形状产生随机整数choice 给定形状产生随机选择shuffle 与random.shuffle相同uniform 给定形状产生随机数组

2.4K40

Python基础——Numpy库超详细介绍+实例分析+附代码

data[ [4,3,0,6] ] 索引,将第4,3,0,6行摘取出来,组成新数组 numpy.reshape(a,b) 将ab的一维数组排列为ab的形式 array([a,b,c,d],[d,e,f,...a[(a>5)&(a%2==0)]  3 给一个数组,选出数组中所有大于5的数和偶数 a[(a>5)|(a%2==0)]  4.3 花式索引  1 对于一个数组,选出其第1,3,4,6,7个元素,组成新的二维数组...NumPy:随机数生成  随机数生成函数在np.random子包内 常用函数:  rand  给定形状产生随机数组(0到1之间的数)  randint  给定形状产生随机整数  choice  给定形状产生随机选择...  shuffle  与random.shuffle相同  uniform  给定形状产生随机数组  部分代码  需要完整代码可评论。 ...#定义了一个二维数组,大小为(2,3) x np.array([[1., 0., 0.],        [0., 1., 2.]]) x.ndim   #数组维度数 2 x.shape    #数组的维数

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python基础——Numpy库超详细介绍+实例分析+附代码

    data[ [4,3,0,6] ] 索引,将第4,3,0,6行摘取出来,组成新数组 numpy.reshape(a,b) 将ab的一维数组排列为ab的形式 array([a,b,c,d],[d,e,f,...a[(a>5)&(a%2==0)]  3 给一个数组,选出数组中所有大于5的数和偶数 a[(a>5)|(a%2==0)]  4.3 花式索引  1 对于一个数组,选出其第1,3,4,6,7个元素,组成新的二维数组...NumPy:随机数生成  随机数生成函数在np.random子包内 常用函数:  rand  给定形状产生随机数组(0到1之间的数)  randint  给定形状产生随机整数  choice  给定形状产生随机选择...  shuffle  与random.shuffle相同  uniform  给定形状产生随机数组  部分代码  需要完整代码可评论。 ...#定义了一个二维数组,大小为(2,3) x np.array([[1., 0., 0.],        [0., 1., 2.]]) x.ndim   #数组维度数 2 x.shape    #数组的维数

    1.4K30

    NumPy基础

    将布尔数组作为掩码    七、花哨索引八、数组的排序 [ NumPy version: 1.18.1 ]  import numpy as np 一、创建数组  # 1.从python列表创建数组 #...# 标量与一维数组 a = np.array([0, 1, 2]) a + 5 # 一维数组与二维数组 M = np.ones((3, 3)) M + a         #一维数组被广播,沿第二维度扩展到匹配...M数组的形状 # 两个数组同时广播 b = np.arange(3)[:, np.newaxis] a + b         #a,b同时扩展匹配至公共形状 解读:  # 一维数组 + 二维数组 一维数组...将布尔数组作为掩码  # 利用比较运算符得到布尔数组,通过索引将特定值选出,即掩码操作 x 数组 x[x < 5]     #输出满足条件的值 # 构建掩码 rainy...,内含3个重复值 # at()函数在这里对给定的操作,给定的索引,给定的值执行就地操作 # 类似方法:reduceat()函数 八、数组的排序  快速排序  # 算法复杂度O[NlogN] # 不修改原始数组的基础上返回一个排好序的数组

    1.3K30

    Numpy 简介

    它是一个提供多了维数组对象,多种派生对象(如:掩码数组、矩阵)以及用于快速操作数组的函数及API, 它包括数学、逻辑、数组形状变换、排序、选择、I/O 、离散傅立叶变换、基本线性代数、基本统计运算、随机模拟等等...关于数组大小和速度的要点在科学计算中尤为重要。举一个简单的例子,考虑将1维数组中的每个元素与相同长度的另一个序列中的相应元素相乘的情况。...此外,在上面的示例中,a和b可以是相同形状的多维数组,也可以是一个标量和一个数组,甚至是两个不同形状的数组,只要较小的数组“可以”扩展到较大的数组的形状,从而得到的广播是明确的。...insert(arr, obj, values[, axis]) 在给定索引之前沿给定轴插入值。 append(arr, values[, axis]) 将值附加到数组的末尾。...reshape(a, newshape[, order]) 为数组提供新形状而不更改其数据。 roll(a, shift[, axis]) 沿给定轴滚动数组元素。

    4.7K20

    5个优雅的Numpy函数助你走出困境

    本文转自『机器之心编译』(almosthuman2014) 在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。...有意思的是,我们可以将新形状中的一个参数赋值为-1。这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。 ?...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    67120

    5个高效&简洁的Numpy函数

    在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 Clip 示例:限制数组中的最小值为 2,最大值为 6。

    71840

    Numpy的广播功能

    数组的计算:广播广播的介绍广播的规则广播的实际应用比较,掩码和布尔逻辑比较操作操作布尔数组将布尔数组作为掩码 《Python数据科学手册》读书笔记 数组的计算:广播 另外一种向量化操作的方法是利用 NumPy...例如, 可以简单地将一个标量(可以认为是一个零维的数组) 和一个数组相加: a + array([, , ]) 我们可以认为这个操作是将数值 5 扩展或重复至数组 [5, 5, 5], 然后执行加法...这里这个一维数组就被扩展或者广播了。它沿着第二个维度扩展, 扩展到匹配 M 数组的形状。...,那么小维度数组的形状将会在最左边补1 如果两个数组的形状在任何一个维度都不匹配,那么数组的形状将会沿着维度为1的维度扩展以匹配另外一个数组的形状 如果两个数组的形状在任何一个维度都不匹配并且没有任何一个维度等于...NumPy 提供了一些简明的模式来操作这些布尔结果。 操作布尔数组 给定一个布尔数组, 你可以实现很多有用的操作。

    1.8K20

    5个优雅的Numpy函数助你走出数据处理困境

    在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。让我们来看以下例子: ?...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。 ?...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    59510

    教程 | NumPy常用操作

    我们可以使用 reshape() 函数将该数组转化为我们想要的维度,如下,我们将 B 的形状转化为 3×3,reshape() 方法将会返回一个多维数组,因此它的左右分别有两个方括号。...如下我们给定参数 axis=1,其代表将每一行的元素累加为一个标量值。...np.diff() 若给定一个数组,我们该如何求取该数组两个元素之间的差?NumPy 提供了 np.diff() 方法以求 A[n+1]-A[n] 的值,该方法将输出一个由所有差分组成的数组。...所以将一个维度为 [3,2] 的矩阵与一个维度为 [3,1] 的矩阵相加是合法的,NumPy 会自动将第二个矩阵扩展到等同的维度。...但在 NumPy 的广播机制下,维度为 1 的项何以扩展到相应的维度,所以它们就能够执行运算。

    2.1K40

    数据运算最优雅的5个的Numpy函数

    本期推荐寄语:分享 5 个高效的 NumPy 函数,助力你高效、简洁地处理数据。 在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。...有意思的是,我们可以将新形状中的一个参数赋值为-1。这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 在 Argpartition:在数组中找到最大的 N 个元素。 ?...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。...例如,如果指定的区间是 [-1,1],小于-1 的值将变为-1,而大于 1 的值将变为 1。 ? Clip 示例:限制数组中的最小值为 2,最大值为 6。

    55110

    数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境

    本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。

    38430

    数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境

    本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。 ?...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。让我们来看以下例子: ?...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。 ?...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。

    60910

    数据处理遇到麻烦不要慌,5个优雅的Numpy函数助你走出困境

    本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。 ?...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。让我们来看以下例子: ?...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。 ?...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。

    43620

    5个优雅的Numpy函数助你走出数据处理困境

    本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。让我们来看以下例子: ?...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。 ?...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。

    42010

    5个优雅的Numpy函数助你走出数据处理困境

    本文作者将分享 5 个优雅的 Python Numpy 函数,有助于高效、简洁的数据处理。 ?...在 reshape 函数中使用参数-1 Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。...这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。让我们来看以下例子: ?...当使用 -1 参数时,与-1 相对应的维数将是原始数组的维数除以新形状中已给出维数的乘积,以便维持相同数量的元素。 Argpartition:在数组中找到最大的 N 个元素。 ?...Numpy 内置的 Clip 函数可以解决这个问题。Numpy clip () 函数用于对数组中的值进行限制。给定一个区间范围,区间范围外的值将被截断到区间的边界上。

    49630

    Python:Numpy详解

    所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。  很多时候可以声明 axis。...如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。 ...numpy.broadcast_to numpy.broadcast_to 函数将数组广播到新形状。它在原始数组上返回只读视图。 它通常不连续。...:   numpy.expand_dims(arr, axis) 参数说明:  arr:输入数组axis:新轴插入的位置  numpy.squeeze numpy.squeeze 函数从给定数组的形状中删除一维的条目...numpy.matmul numpy.matmul 函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。

    3.6K00

    资源 | 从数组到矩阵的迹,NumPy常见使用大总结

    我们可以使用 reshape() 函数将该数组转化为我们想要的维度,如下,我们将 B 的形状转化为 3×3,reshape() 方法将会返回一个多维数组,因此它的左右分别有两个方括号。...如下我们给定参数 axis=1,其代表将每一行的元素累加为一个标量值。...np.diff() 若给定一个数组,我们该如何求取该数组两个元素之间的差?NumPy 提供了 np.diff() 方法以求 A[n+1]-A[n] 的值,该方法将输出一个由所有差分组成的数组。...所以将一个维度为 [3,2] 的矩阵与一个维度为 [3,1] 的矩阵相加是合法的,NumPy 会自动将第二个矩阵扩展到等同的维度。...但在 NumPy 的广播机制下,维度为 1 的项何以扩展到相应的维度,所以它们就能够执行运算。

    8.5K90

    Python—numpy模块下函数介绍(一)numpy.ones、empty等

    NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。...比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组。所以这个一维数组就是NumPy中的轴(axes),而轴的数量——秩,就是数组的维数。...2、empty_like(a)   依据给定数组(a)的形状和类型返回一个新的空数组 a=np.array([[1.,2.,3.],[4.,5.,6.]]) print('\nnp.empty_like...] [ 0. 0. 1.]] 5、zeros(shape[, dtype, order])   依据给定形状和类型(shape[, dtype, order])返回一个新的元素全部为0的数组。...输出:ndarray给定形状,数据类型的数组。

    1.7K20

    【NumPy高级运用】NumPy的Matrix与Broadcast高级运用以及IO操作

    import numpy.matlib import numpy as np print (np.matlib.empty((2,2))) NumPy的Broadcast运用 广播是numpy对不同形状的数组执行数值计算的一种方式...数组上的算术运算通常在相应的元素上执行。 如果两个数组a和b的形状相同,即a.shape==b.shape,则a*b的结果是数组a和b的相应位的乘法。这需要相同的维数和每个维数的相同长度。...savez()函数用于将多个数组写入文件。默认情况下,数组以未压缩的原始二进制格式保存在扩展名为.npz的文件中。...NumPy数组的维数称为rank,rank是轴的数量,即数组的维数。一维阵列的秩是1,二维阵列的秩为2,依此类推。 在NumPy中,每个线性阵列称为轴,即维度。...例如,二维阵列等效于两个一维阵列,第一个一维阵列中的每个元素都是一维阵列。所以一维数组是NumPy中的轴。第一个轴等效于基础数组,第二个轴是基础数组中的数组。轴的数量,秩,是阵列的维数。

    56820
    领券