首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas DataFrame 中的自连接和交叉连接

    SQL语句提供了很多种JOINS 的类型: 内连接 外连接 全连接 自连接 交叉连接 在本文将重点介绍自连接和交叉连接以及如何在 Pandas DataFrame 中进行操作。...自连接 顾名思义,自连接是将 DataFrame 连接到自己的连接。也就是说连接的左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 中的行。...进行左链接,如果没有这个经理则会得到 NaN,最后就是重命名列。 最终输出如下所示。Regina Philangi 没有经理,这意味着她不向任何一位经理汇报。她是最高管理者。...df_manager2 的输出与 df_manager 相同。 交叉连接 交叉连接也是一种连接类型,可以生成两个或多个表中行的笛卡尔积。它将第一个表中的行与第二个表中的每一行组合在一起。...也可以使用 pandas.concat () 函数,与 pandas.merge () 函数相同的结果。

    4.3K20

    一个list 里面存放实体类,根据多个字段进行分组,最后将结果都保存,返回一个map 集合,一层一层的map 集合

    目录 1 需求 2 实现 1 需求 现在从数据库查询出一个list 集合的数据,是一个实体类,现在需要根据多个字段进行分组,最后只是返回一个map 集合。...一层一层的 2 实现 如果你想在最后一层的列表数据上进行计算,并将计算结果保存并返回一个Map集合,可以按照以下方式修改代码: import java.util.List; import java.util.Map...// ... } 在修改后的代码中,我们使用Collectors.collectingAndThen方法来在最后一层分组的数据上进行计算。...calculateValue方法接收一个最后一层的列表数据,并根据实际需求进行计算,并返回计算结果。这样,最终的分组结果将包含计算结果的Map集合。...如果在最后一层,需要传另外的参数 如果calculateValue方法需要接收一个最后一层的列表数据和一个额外的字符串变量,你可以将该变量添加到方法的参数列表中,并在Collectors.collectingAndThen

    71210

    详解pd.DataFrame中的几种索引变换

    导读 pandas中最常用的数据结构是DataFrame,而DataFrame相较于嵌套list或者二维numpy数组更好用的原因之一在于其提供了行索引和列名。...后文将以此作为操作对象,针对索引的几种常用变换进行介绍。 注:这里的索引应广义的理解为既包扩行索引,也包括列标签。...),可接收字典或函数完成单列数据的变换;apply既可用于一列(即Series)也可用于多列(即DataFrame),但仅可接收函数作为参数,当作用于Series时对每个元素进行变换,作用于DataFrame...时对其中的每一行或每一列进行变换;而applymap则仅可作用于DataFrame,且作用对象是对DataFrame中的每个元素进行变换。...05 stack与unstack 这也是一对互逆的操作,其中stack原义表示堆叠,实现将所有列标签堆叠到行索引中;unstack即解堆,用于将复合行索引中的一个维度索引平铺到列标签中。

    2.5K20

    Pandas部分应掌握的重要知识点

    索引器中括号内行列下标的位置上都允许使用切片和花式索引,下例中行使用切片,列使用花式索引。 注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...(过滤掉不满足条件的分组) 现在要求找到前两个季度平均销售额都大于45的团队,显然这是一个对分组进行过滤的任务。...NaN(Not a Number),它是一个特殊的浮点数;另一种是使用Python中的None;Pandas会自动把None转变成NaN。...data=pd.Series([1, np.nan, 'hello', None]) data 2、 与缺失值判断和处理相关的方法 isnull(): 判断每个元素是否是缺失值,会返回一个与原对象尺寸相同的布尔性...Pandas对象 notnull(): 与isnull()相反 dropna(): 返回一个删除缺失值后的数据对象 fillna(): 返回一个填充了缺失值之后的数据对象 (1)判断是否含有缺失值: data.isnull

    4800

    玩转Pandas,让数据处理更easy系列1

    数据类型)以及一组与之相关的数据标签(即索引)组成。...Series对象本质上是一个NumPy的数组,因此NumPy的数组处理函数可以直接对Series进行处理。...2.3 Series增删改查 2.3.1增加 Series的增加有两个类似的API,但是不要混淆了啊,一个是add,它的效果是元素对应相加,另一个是append,才是将元素拼接到原series后。...既然DataFrame和Series如此紧密,那么它们之间又是如何通信的呢? 下面看下如何将一个Series转载到一个DataFrame的实例中。...可以观察到s3的name变为了加入后的行标签 以上,pandas的两种最重要的数据结构,弄明白了其原理,用起来便能顺手些,如有疏漏或错误,请指针。

    1.1K21

    SQL、Pandas和Spark:如何实现数据透视表?

    所以,今天本文就围绕数据透视表,介绍一下其在SQL、Pandas和Spark中的基本操作与使用,这也是沿承这一系列的文章之一。 ?...当然,如果说只实现这两个需求还不能完全表达出数据透视表与常规的groupby有何区别,所以不妨首先看个例子: 给定经典的titanic数据集,我们需要统计不同性别下的生还人数,则可以进行如下设置: ?...03 Spark实现数据透视表 Spark作为分布式的数据分析工具,其中spark.sql组件在功能上与Pandas极为相近,在某种程度上个人一直将其视为Pandas在大数据中的实现。...04 SQL中实现数据透视表 这一系列的文章中,一般都是将SQL排在首位进行介绍,但本文在介绍数据透视表时有意将其在SQL中的操作放在最后,这是因为在SQL中实现数据透视表是相对最为复杂的。...当然,二者的结果是一样的。 以上就是数据透视表在SQL、Pandas和Spark中的基本操作,应该讲都还是比较方便的,仅仅是在SQL中需要稍加使用个小技巧。

    3K30

    Python | 加一行注释,让你的程序提速10+倍!numba十分钟上手指南

    如果你在使用Python进行高性能计算,Numba提供的加速效果可以比肩原生的C/C++程序,只需要在函数上添加一行@jit的装饰。它支持CPU和GPU,是数据科学家必不可少的编程利器。...其余部分还是使用Python原生代码,在计算加速的前提下,避免过长的编译时间。(有关编译时间的问题下节将会介绍。)Numba可以与NumPy紧密结合,两者一起,常常能够得到近乎C语言的速度。...尽管Numba不能直接优化pandas,但是我们可以将pandas中处理数据的for循环作为单独的函数提出来,再使用Numba加速。 编译开销 编译源代码需要一定的时间。...声明一个变量的语法很简单,如a = 1,但没有指定a到底是一个整数和一个浮点小数。Python解释器要进行大量的类型推断,会非常耗时。...Numba还可以使用GPU进行加速,目前支持英伟达的CUDA和AMD的ROC。GPU的工作原理和编程方法与CPU略有不同,本专栏会在后续文章中介绍GPU编程。 Numba原理 ?

    7.5K20

    python数据科学系列:pandas入门详细教程

    导读 前2篇分别系统性介绍了numpy和matplotlib的入门基本知识,今天本文自然是要对pandas进行入门详细介绍,通过本文你将系统性了解pandas为何会有数据分析界"瑞士军刀"的盛誉。...这里提到了index和columns分别代表行标签和列标签,就不得不提到pandas中的另一个数据结构:Index,例如series中标签列、dataframe中行标签和列标签均属于这种数据结构。...前者是将已有的一列信息设置为标签列,而后者是将原标签列归为数据,并重置为默认数字标签 set_axis,设置标签列,一次只能设置一列信息,与rename功能相近,但接收参数为一个序列更改全部标签列信息(...检测各行是否重复,返回一个行索引的bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复的多行时,首行被认为是合法的而可以保留 删除重复值,drop_duplicates...pandas完成这两个功能主要依赖以下函数: concat,与numpy中的concatenate类似,但功能更为强大,可通过一个axis参数设置是横向或者拼接,要求非拼接轴向标签唯一(例如沿着行进行拼接时

    15.1K20

    Pandas基础:如何计算两行数值之差

    标签:Python,pandas 有时候,我们想要计算数据框架中行之间的差,可以使用dataframe.diff()方法,而不遍历行。...对于Excel用户来说,很容易使用循环来计算行之间的差异,因为在Excel中就是这样做的。然而,pandas提供了一个简单得多的解决方案。 我们将使用下面的示例数据框架进行演示。...图2 对于相同的推理,我们可以通过将periods设置为负数来向后计算行之间的差异。这非常方便,因为我们不必颠倒数据的顺序。...图3 还可以通过将periods设置为1以外的数字来计算非连续行之间的差异。 图4 为了帮助可视化上述示例,可以先将列向下移动两行,然后执行减法。...图5 计算两列之间的差 还可以通过将axis参数设置为1(或“columns”)来计算数据框架中各列之间的差异。pandas中的axis参数通常具有默认值0(即行)。

    4.8K31

    Python3分析Excel数据

    print语句使用worksheet对象的name属性确定每个工作表名称,使用nrows和ncols属性确定每个工作表中行与列的数量。...设置数据框和iloc函数,同时选择特定的行与特定的列。如果使用iloc函数来选择列,那么就需要在列索引值前面加上一个冒号和一个逗号,表示为这些特定的列保留所有的行。...用loc函数,在列标题列表前面加上一个冒号和一个逗号,表示为这些特定的列保留所有行。 pandas_column_by_name.py #!...想知道一个文件夹中工作簿的数量,每个工作簿中工作表的数量,以及每个工作表中行与列的数量: 12excel_introspect_all_ workbooks.py #!...用pandas将多个工作簿中所有工作表的数据垂直连接成一个输出文件 pandas_concat_data_from_multiple_workbook.py #!

    3.4K20

    python数据分析和可视化——一篇文章足以(未完成)

    使用numpy.zeros来创建一个全0的数组,数组中的各个元素均为0。  使用numpy.ones来创建一个全1的数组,数组中的各个元素均为1。  ...Numpy广播机制 NumPy广播是NumPy对不同形状的数组进行数值计算的方式,NumPy广播要求对数组的算术运算通常在相应的元素上进行。...简单的说,当两个数组计算时,会比较它们的每个维度(若其中一个数组没有当前维度则忽略),如果满足以下三个条件则触发广播机制: 数组拥有相同形状。 当前维度的值相等。 当前维度的值有一个是1。..., 2]) print("frame_c中行索引为\"a\"、列索引为\"x\"的元素是:", frame_c.loc["a"]["x"]) frame_c.iloc[1, 2] = 99 print(..., axis=1)) print("frame_c丢弃\"a\"行后的结果是:") print(frame_c.drop("a")) 排序与统计 import pandas as pd import

    89310

    数据科学 IPython 笔记本 7.3 Pandas 数据操作

    在前一章中,我们详细介绍了 NumPy 及其ndarray对象,它在 Python 中提供了密集类型数组的高效存储和操作。在这里,通过详细了解 Pandas 库提供的数据结构,我们将构建这些知识。...Pandas 是一个基于 NumPy 构建的新软件包,它提供了高效的DataFrame实现。DataFrame本质上是多维数组,带有附加的行和列标签,通常具有异构类型和/或缺失数据。...虽然它很好地服务于此目的,但当我们需要更多的灵活性(例如,将标签附加到数据,处理缺失数据等),以及尝试一些操作,它们不能很好地映射到逐元素广播时(例如, 分组,透视等),它的局限性就很明显了。...在本章中,我们将重点介绍有效使用Series,DataFrame和相关结构的机制。我们将在适当的地方使用从真实数据集中提取的示例,但这些示例不一定是重点。...__version__ # '0.18.1' 正如我们通常在别名np下导入 NumPy 一样,我们将在别名pd下导入 Pandas: import pandas as pd 此导入约定将在本书的其余部分中使用

    35510

    linux内核启动流程分析 - efi_main

    有关boot_params的创建及其hdr的初始化,我们在 linux内核启动流程分析 - efi_pe_entry 中有讲到,这里就不再赘述。 继续看该函数的其余部分。 ?...该部分主要讲在某些情况下,加载到内存的kernel需要被移动到合适的位置。 710行通过将bzimage_addr和image_offset相减,计算出kernel被加载到内存时的起始地址。...看上图中的选中行,startup_32的编译时地址是0,也就是说,它是compressed部分的起始地址。...build.c是一个小工具,用于将setup部分和compressed部分拼接起来,组成最终的bzImage。 在该工具执行过程中,其有如下操作: ?...最后805行,返回bzimage_addr的值,即startup_32的运行地址给efi_stub_entry,函数结束。

    3.7K30

    懂Excel就能轻松入门Python数据分析包pandas(七):分列

    ,因此,本系列文章将引入 Excel 中一个非常高效的数据处理插件—— Power Query,并且看看 pandas 是怎样灵活解决。...本文结构: - 先看看简单的分列 - 接着尝试分割扩展成行 - 最后是多列分割扩展成行 Excel 分列 Excel 中对数据进行分列是非常简单的。...这符合当前需求 复杂点的需求 有时候,我们希望分割的内容,转化成行,需求如下: - 比如,第一行 张三 的科目中有3个元素,则分割结果 张三就有3行 使用 Excel 自带功能处理这需求就比较困难...如下: - 同时把科目和成绩分割扩展到行 直接看 pandas 怎么解决: - 先对 科目 与 成绩 列分别进行 split 后,再进行 explode - 然后通过 concat,与原来的 性名...,通常与 Series.str.split() 配合使用 下一节,将看看 Excel 举世闻名的 vlookup 函数与 pandas 中的实现

    1.3K10

    【python数据分析】Pandas数据载入

    ‍ 哈喽大家好,本次是python数据分析、挖掘与可视化专栏第五期 ⭐本期内容:Pandas数据载入 系列专栏:Python数据分析、挖掘与可视化 “总有一段时光悄悄过去然后永远怀念.”...Pandas库将外部数据转换为DataFrame数据格式,处理完成后再存储到相应的外部文件中。...Pandas 常用的导入格式:import pandas as pd ---- 一、数据载入 1.文本文件读取 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...read_csv默认为“,”,read_table默认为制表符“\t”,如果分隔符指定错误,在读取数据的时候,每一行数据将连成一片 header 接收int或sequence,表示将某行数据作为列名,默认为...1.merge数据合并 · merge·函数是通过一个或多个键将两个DataFrame按行合并起来,Pandas中的数据合并merge( )函数格式如下: merge(left, right, how=

    36120
    领券