TypeError: unhashable type: 'dict'在Python编程中,TypeError是一种常见的错误类型。...当我们尝试对不可哈希(unhashable)的对象进行哈希操作时,就会出现TypeError: unhashable type的错误。...TypeError: unhashable type: 'dict'错误的原因在Python中,字典是可变的,也就是说它们可以被修改。因此,字典是不可哈希的(unhashable)。...当我们尝试将一个字典作为键值(key)或将字典添加到集合(set)中时,就会出现TypeError: unhashable type的错误。...而当我们不小心尝试对字典进行哈希操作时,就会出现TypeError: unhashable type的错误。 一个常见的应用场景是使用字典作为缓存的键值。
7.6 Pandas 中的数据操作 原文:Operating on Data in Pandas 译者:飞龙 协议:CC BY-NC-SA 4.0 本节是《Python 数据科学手册》(Python...Pandas 包含一些有用的调整,但是:对于一元操作,如取负和三角函数,这些ufunc将保留输出中的索引和列标签,对于二元操作,如加法和乘法,将对象传递给ufunc时,Pandas 将自动对齐索引。...通用函数:索引对齐 对于两个Series或DataFrame对象的二元操作,Pandas 将在执行操作的过程中对齐索引。这在处理不完整数据时非常方便,我们将在后面的一些示例中看到。...数据帧和序列之间的操作 执行DataFrame和Series之间的操作时,与之相似,索引和列是保持对齐的。...,Pandas 中的数据操作将始终维护数据上下文,这可以防止在处理原始 NumPy 数组中的异构和/或未对齐数据时,可能出现的愚蠢错误。
DataFrame.to_markdown 方法,把数据帧导出到 Markdown 表格中。...不过,Pandas 推荐用户合理使用这些数据类型,在未来的版本中也将改善特定类型运算的性能,比如正则表达式匹配(Regex Match)。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...另一个最常用的变动出现在 DataFrame.hist() 和 Series.his() 中。现在 figsize 没有默认值,要想指定绘图的大小,需要输入元组。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。
大家好,又见面了,我是你们的朋友全栈君。 而df.fillna(0)用0填充所有NA / NaN值,是否有一个函数将所有非NA / NaN值替换为另一个值,例如1?...如果我的DataFrame中的值是可变长度列表,那么: > df.replace()要求列表长度相同 >布尔索引,如df [len(df)> 0] = 1抛出ValueError:无法插入True,已经存在...> pandas.get_dummies()抛出TypeError:unhashable类型:’list’ 有更简单的解决方案吗?...NaN 2 5 1 2 5 NaN 2 2 5 NaN >>> df[df.notnull()] = 1 >>> df 0 1 2 0 NaN 1 1 1 1 1 NaN 2 1 1 NaN 标签:python...,dataframe,pandas,nan 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/170033.html原文链接:https://javaforall.cn
一、引言Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它并不是专门为图像处理设计的,但在某些情况下,我们可以利用 Pandas 的强大功能来辅助图像处理任务。...数据类型不匹配当我们将图像数据转换为 DataFrame 时,可能会遇到数据类型不匹配的问题。...例如,原始图像数据可能是无符号整数类型(如 uint8),而 Pandas 默认创建的 DataFrame 列可能为浮点型或其他类型。这会导致后续操作出现错误。...如果不小心混淆了通道顺序,在保存或显示图像时会出现颜色偏差。解决方法: 明确指定颜色通道顺序,必要时调整通道顺序。..."TypeError: Cannot interpret '...' as a data type"这可能是由于传递给 DataFrame 构造函数的数据类型不符合要求。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...然后,通过将列名称 ['Batsman', 'Runs', 'Balls', '5s', '4s'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建了 6 列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。
ingest函数负责将数据加载到内存中,并将其传递给一组由 Zipline 提供的写入器对象,以将数据转换为 Zipline 的内部格式。...只有在成功加载后,缓存才会被清除,这可以防止摄取函数在解析中出现错误时需要重新下载所有数据。如果获取数据非常快,例如如果它来自另一个本地文件,则不需要使用此缓存。...只有在成功加载后,缓存才会被清除,这可以防止摄取函数在解析中出现错误时需要重新下载所有数据。如果获取数据非常快,例如如果它来自另一个本地文件,则不需要使用此缓存。...注意 传递给write()的数据可以是惰性迭代器或生成器,以避免一次性将所有分钟数据加载到内存中。只要日期严格递增,一个给定的 sid 也可以在数据中出现多次。...然后它可以解析并写入数据。只有在成功加载后,缓存才会被清除,这可以防止摄取函数在解析中出现错误时需要重新下载所有数据。如果获取数据非常快,例如如果数据来自另一个本地文件,则不需要使用此缓存。
有很多种实现的途径,我最喜欢的方式是传一个字典给DataFrame constructor,其中字典中的keys为列名,values为列的取值。 ?...你可以对前两列使用astype()函数: ? 但是,如果你对第三列也使用这个函数,将会引起错误,这是因为这一列包含了破折号(用来表示0)但是pandas并不知道如何处理它。...接着我们使用drop()函数来舍弃“moive_1”中出现过的行,将剩下的行赋值给"movies_2"DataFrame: ? 你可以发现总的行数是正确的: ?...将一个由列表组成的Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ? 这里有两列,第二列包含了Python中的由整数元素组成的列表。...我们现在隐藏了索引,将Close列中的最小值高亮成红色,将Close列中的最大值高亮成浅绿色。 这里有另一个DataFrame格式化的例子: ?
GROUPED_MAP UDF是最灵活的,因为它获得一个Pandas数据帧,并允许返回修改的或新的。 4.基本想法 解决方案将非常简单。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...Spark DataFrame和JSON 相互转换的函数; 2)pandas DataFrame和JSON 相互转换的函数 3)装饰器:包装类,调用上述2类函数实现对数据具体处理函数的封装 1) Spark...complex_dtypes_to_json将一个给定的Spark数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...Pandas DataFrame的转换 类似地,定义了与上面相同的函数,但针对的是Pandas数据帧。
到目前为止,我们主要关注一维和二维数据,分别存储在 Pandas Series和DataFrame对象中。通常,超出此范围并存储更高维度的数据(即由多于一个或两个键索引的数据)是有用的。...,但不像我们所喜欢的 Pandas 中的切片语法那样干净(或对大型数据集有效)。...MultiIndex的创建方法 为Series或DataFrame构造多重索引的最简单方法,是简单地将两个或多个索引数组的列表传递给构造器。...时,这些对象中的任何一个都可以作为index参数传递,或者传递给现有Series或DataFrame的reindex方法。...这个语法实际上是GroupBy函数的简写,我们将在“聚合和分组”中讨论。虽然这是一个玩具示例,但许多真实世界的数据集具有相似的层次结构。
有很多种实现的途径,我最喜欢的方式是传一个字典给DataFrame constructor,其中字典中的keys为列名,values为列的取值。...将DataFrame划分为两个随机的子集 假设你想要将一个DataFrame划分为两部分,随机地将75%的行给一个DataFrame,剩下的25%的行给另一个DataFrame。...将DataFrame划分为两个随机的子集 假设你想要将一个DataFrame划分为两部分,随机地将75%的行给一个DataFrame,剩下的25%的行给另一个DataFrame。...drop()函数来舍弃“moive_1”中出现过的行,将剩下的行赋值给"movies_2"DataFrame: movies_2 = movies.drop(movies_1.index) 你可以发现总的行数是正确的...()函数中第一个参数为选项的名称,第二个参数为Python格式化字符。
作者:Benedikt Droste 编译:1+1=6 前言 如果你使用Python和Pandas进行数据分析,循环是不可避免要使用的。...标准循环 Dataframe是Pandas对象,具有行和列。如果使用循环,你将遍历整个对象。Python不能利用任何内置函数,而且速度非常慢。...Pandas Vectorization:快9280倍 我们利用向量化的优势来创建真正高效的代码。关键是要避免案例1中那样的循环代码: 我们再次使用了开始时构建的函数。我们所要做的就是改变输入。...我们直接将Pandas Series传递给我们的功能,这使我们获得了巨大的速度提升。 Nump Vectorization:快71803倍 在前面的示例中,我们将Pandas Series传递给函数。...代码运行了0.305毫秒,比开始时使用的标准循环快了 71803倍! 总结 我们比较了五种不同的方法,并根据一些计算将一个新列添加到我们的DataFrame中。
在这里,我们将看看在 Pandas Series和DataFrame对象中,访问和修改值的类似方法。...这些不是函数方法而是属性,它们将特定切片接口提供给Series中的数组。...数据帧中的数据选择 回想一下,DataFrame在很多方面都类似二维或结构化数组,在其它方面莱斯共享相同索引的Series结构的字典。在我们探索此结构中的数据选择时,记住些类比是有帮助的。...作为字典的数据帧 我们将考虑的第一个类比是,DataFrame作为相关Series对象的字典。...作为二维数组的数据帧 如前所述,我们还可以将DataFrame视为扩展的二维数组。
有很多种实现的途径,我最喜欢的方式是传一个字典给DataFrame constructor,其中字典中的keys为列名,values为列的取值。 ?...将字符型转换为数值型 让我们来创建另一个示例DataFrame: ? 这些数字实际上储存为字符型,导致其数据类型为object: ? 为了对这些列进行数学运算,我们需要将数据类型转换成数值型。...你可以对前两列使用astype()函数: ? 但是,如果你对第三列也使用这个函数,将会引起错误,这是因为这一列包含了破折号(用来表示0)但是pandas并不知道如何处理它。...按行从多个文件中构建DataFrame 假设你的数据集分化为多个文件,但是你需要将这些数据集读到一个DataFrame中。 举例来说,我有一些关于股票的小数聚集,每个数据集为单天的CSV文件。...我们以生成器表达式用read_csv()函数来读取每个文件,并将结果传递给concat()函数,这会将单个的DataFrame按行来组合: ? 不幸的是,索引值存在重复。
笔者的做法是打开该文件然后在文本编辑器中改动,再一点一点查看变动的地方。 3.复选框 复选框的一个功能就是隐藏或显示/隐藏程序中的特定区域,另一个用途是设置函数的布尔参数值。...其实并不可行,因为创建的应用程序会保留下深度学习模型或复杂的机器学习模型。接下来在讲Streamlit的缓存时会向读者阐释这一点。 ...接下来在Streamlit中通过st.cache装饰器函数体验缓存的功能吧。 ...如果Streamlit之前没有处理过这些数据,它会调用函数并将运算结果存到本地缓存中。 ...下次再调用函数时,倘若还是这些参数,Streamlit就会完全跳过这一块的函数执行,直接用缓存器里的结果数据。
Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法。...本教程中的代码是使用 pandas 1.2.0 和Python 3.9.1 执行的。 注意:整个燃油经济性数据集约为 18 MB。将整个数据集读入内存可能需要一两分钟。...注意:在 Pandas 中,kind当您对多个列或标签进行排序时会被忽略。 当您对具有相同键的多条记录进行排序时,稳定的排序算法将在排序后保持这些记录的原始顺序。...对于文本数据,排序区分大小写,这意味着大写文本将首先按升序出现,最后按降序出现。 按具有不同排序顺序的多列排序 您可能想知道是否可以使用多个列进行排序并让这些列使用不同的ascending参数。...如果您熟悉 Python 的内置函数sort()and sorted(),那么inplacepandas 排序方法中可用的参数可能会感觉非常相似。
一、Pandas 和数据分析简介 在本章中,我们解决以下问题: 数据分析的动机 如何将 Python 和 Pandas 用于数据分析 Pandas 库的描述 使用 Pandas 的好处 数据分析的动机...注 从源头在 Windows 上安装 Pandas 容易出现许多错误和错误,因此不建议这样做。...默认行为是为未对齐的序列结构生成索引的并集。 这是可取的,因为信息可以保留而不是丢失。 在本书的下一章中,我们将处理 Pandas 中缺失的值。 数据帧 数据帧是一个二维标签数组。...pandas.io.parsers.read_fwf:这是一个辅助函数,它将固定宽度的线表读入 Pandas 数据帧结构。 操作 在这里,我将简要描述各种数据帧操作。...由于并非所有列都存在于两个数据帧中,因此对于不属于交集的数据帧中的每一行,来自另一个数据帧的列均为NaN。
学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法。最常见的数据分析是使用电子表格、SQL或pandas 完成的。...本教程中的代码是使用 pandas 1.2.0 和Python 3.9.1 执行的。 注意:整个燃油经济性数据集约为 18 MB。将整个数据集读入内存可能需要一两分钟。...注意:在 Pandas 中,kind当您对多个列或标签进行排序时会被忽略。 当您对具有相同键的多条记录进行排序时,稳定的排序算法将在排序后保持这些记录的原始顺序。...对于文本数据,排序区分大小写,这意味着大写文本将首先按升序出现,最后按降序出现。 按具有不同排序顺序的多列排序 您可能想知道是否可以使用多个列进行排序并让这些列使用不同的ascending参数。...如果您熟悉 Python 的内置函数sort()and sorted(),那么inplacepandas 排序方法中可用的参数可能会感觉非常相似。
Pandas 数据统计包的 6 种高效函数 Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力的数据结构,旨在使处理结构化 (表格化、多维、异构) 和时间序列数据变得既简单又直观...Pandas 擅长处理的类型如下所示: 容易处理浮点数据和非浮点数据中的 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度的对象中插入或者是删除列; 显式数据可自动对齐...简化将数据转换为 DataFrame 对象的过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引的数据; 基于标签的智能切片、索引以及面向大型数据集的子设定; 更加直观地合并以及连接数据集...用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。
领取专属 10元无门槛券
手把手带您无忧上云