首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

设备巡检系统哪个好?2023年好用的设备巡检系统推荐

企业需要借助标准化的设备管理系统解决这些问题。易点易动基于云计算、物联网、IoT等技术,开发出一套灵活易用的设备巡检解决方案,助力企业开展无纸化、数字化的设备巡检工作。...此外,该系统支持企业自由灵活设置个性化流程、巡检路线、巡检内容等,让设备巡检更加高效。图片易点易动设备巡检管理系统的优势如下:一物对一码精准管理。...易点易动系统中,每个设备录入后都有对应的专属二维码。员工用手机扫描二维码就可以填写该设备的当前状况,有效避免漏检、重检的情况发生。...易点易动设备巡检管理系统支持针对设备巡检数据进行数据分析,包括巡检次数、巡检结果、设备故障率等。通过数据分析,管理者可以快速了解企业设备的健康状况,并作出相应的决策。...易点易动设备巡检管理系统提供了完善的客户服务支持,用户可以通过在线客服、电话、邮件等方式与易点易动的客服团队联系,及时解决遇到的问题。

24030

【AI系统】感知量化训练 QAT

本文将会介绍感知量化训练(QAT)流程,这是一种在训练期间模拟量化操作的方法,用于减少将神经网络模型从 FP32 精度量化到 INT8 时的精度损失。...感知量化训练流程 传统的训练后量化将模型从 FP32 量化到 INT8 精度时会产生较大的数值精度损失。...QAT 的流程如下图所示,首先基于预训练好的模型获取计算图,对计算图插入伪量化算子。准备好训练数据进行训练或者微调,在训练过程中最小化量化误差,最终得到 QAT 之后对神经网络模型。...微调时间为原始训练计划的 10% 感知量化训练不需要像原始训练那样耗时,因为模型已经相对较好地训练过,只需要调整到较低的精度。一般来说,微调时间为原始训练计划的 10% 是一个不错的经验法则。...QAT 和 PTQ 对比 PTQ QAT 通常较快 较慢 无需重新训练模型 需要训练/微调模型 量化方案即插即用 量化方案即插即用(需要重新训练) 对模型最终精度控制较少 对最终精度控制更多,因为量化参数是在训练过程中学习到的

16010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【AI系统】并行训练基本介绍

    分布式训练是一种模型训练模式,它将训练工作量分散到多个工作节点上,从而大大提高了训练速度和模型准确性。虽然分布式训练可用于任何类型的 AI 模型训练,但将其用于大模型和计算要求较高的任务最为有利。...(Hybrid Parallel),可扩展的分布式训练组件,如:设备网格(Device Mesh)、RPC 分布式训练以及自定义扩展等。...具体来说,这些功能的实现可以分为三个主要组件:分布式数据并行训练(DDP)是一种广泛采用的单程序多数据训练范式。在 DDP 中,模型会在每个进程上复制,每个模型副本将接收不同的输入数据样本。...基于 RPC 的分布式训练(RPC)支持无法适应数据并行训练的通用训练结构,例如分布式流水线并行、参数服务器范式以及 DDP 与其他训练范式的组合。...通过充分利用这些分布式训练组件,开发人员可以在各种计算要求和硬件配置下高效地训练大模型,实现更快的训练速度和更高的模型准确性。

    11810

    腾讯云工业质检训练平台TI-AOI升级发布,成立工业AI质检生态联盟

    7月19日,腾讯云在工业质检合作伙伴沙龙暨生态联盟发布会上,宣布升级发布工业质检训练平台TI-AOI 2.3版本,并携手首批合作伙伴成立工业AI质检生态联盟,共同推动人工智能技术与实体产业深度融合,助力行业加快发展新质生产力...腾讯云副总裁、腾讯云智能产研负责人吴永坚表示,腾讯云在工业质检领域深耕多年,现已构建起包括工业质检训练平台TI-AOI、腾讯云TI平台等在内的AI视觉检测产品矩阵。...此次升级发布的工业质检训练平台TI-AOI,是面向工业视觉质量检测场景推出的零代码开发和交付工具,它以深度学习检测为核心,构建起一个高效、稳定的数据处理和工作流程。...做好工业AI质检项目,需要“光、机、电、软、算”软硬件一体化的系统工程能力。...此次成立工业AI质检生态联盟,是腾讯云工业AI质检生态的进一步深化。

    38810

    【AI系统】训练后量化与部署

    本文将会重点介绍训练后量化技术的两种方式:动态和静态方法,将模型权重和激活从浮点数转换为整数,以减少模型大小和加速推理。并以 KL 散度作为例子讲解校准方法和量化粒度控制来平衡模型精度和性能。...训练后量化的方式 训练后量化的方式主要分为动态和静态两种。...相比量化训练,静态离线量化不需要重新训练,可以快速得到量化模型。...选取验证数据集中一部分具有代表的数据作为校准数据集(Calibration); 对于校准数据进行 FP32 的推理,对于每一层: 收集 activation 的分布直方图; 使用不同的阈值来生成一定数量的量化好的分布...; 计算量化好的分布与 FP32 分布的 KL divergence; 选取使 KL 最小的阈值作为 saturation 的阈值。

    13210

    转载:【AI系统】并行训练基本介绍

    分布式训练是一种模型训练模式,它将训练工作量分散到多个工作节点上,从而大大提高了训练速度和模型准确性。虽然分布式训练可用于任何类型的 AI 模型训练,但将其用于大模型和计算要求较高的任务最为有利。...(Hybrid Parallel),可扩展的分布式训练组件,如:设备网格(Device Mesh)、RPC 分布式训练以及自定义扩展等。...具体来说,这些功能的实现可以分为三个主要组件:分布式数据并行训练(DDP)是一种广泛采用的单程序多数据训练范式。在 DDP 中,模型会在每个进程上复制,每个模型副本将接收不同的输入数据样本。...基于 RPC 的分布式训练(RPC)支持无法适应数据并行训练的通用训练结构,例如分布式流水线并行、参数服务器范式以及 DDP 与其他训练范式的组合。...通过充分利用这些分布式训练组件,开发人员可以在各种计算要求和硬件配置下高效地训练大模型,实现更快的训练速度和更高的模型准确性。

    6210

    【AI系统】谷歌 TPUv2 训练芯片

    通常来说训练过程通过设计合适 AI 模型结构以及损失函数和优化算法,将数据集以 mini-batch 反复进行前向计算并计算损失,反向计算梯度利用优化函数来更新模型,使得损失函数最小从而使得模型收敛。...之后准备好的模型则会被部署在生产环境,每一次当新的数据传来,这份数据只需要在部署好的模型内向前传播一次就可以得到模型输出并投入生产。训练场景难点那么细化下来,训练场景到底有哪些难点呢?...TPUv1 是一种单芯片系统,作为协处理器用于推理。如果在单个芯片上训练谷歌的生产模型,需要数月时间。...直接连接简化了机架级别的部署,但在多机架系统中,机架必须是相邻的。...芯片架构平面图下面是 TPU v2 的平面布局图,我们可以看到大部分区域都是用于蓝色的计算核心,内存系统和互连占据了剩下的一大半。

    12210

    拔刺 | 如何评价汽车AI系统?是好“助理”吗?

    今日拔刺: 1、如何评价汽车AI系统?是好“助理”吗? 2、物体速度达到光速的话,现代雷达能探测到吗? 3、红外成像的原理是什么?...本文 | 1603字 阅读时间 | 4分钟 如何评价汽车AI系统 是好“助理”吗?...车载AI系统功能贴心,当你饿了,系统能够根据你的常去的餐馆类别自动推荐附近的类似餐馆;当接近拥堵或经常拥堵的路段系统会提醒你换线;当车辆燃油即将用完时它会主动提醒你加油并优选最近的加油站,然后把路线显示出来...车载AI系统像一个引路人,也像一个朋友。它可以帮我们在驾车时解决很多琐事,这个过程中也减少了司机注意力的分散,从一定程度上来讲降低了交通事故发生的概率。...车载AI系统还可以为司机解闷,司机一直坐在驾驶位置,饿了可以语音呼叫AI来找吃的地方,累了还可以让AI来播放音乐听。

    64120

    检修盒面板AI视觉检测系统,赋能工业发展!

    制造业是中国工业化的源头,也是工业生产大国。任何一步的质量都可能影响生产过程的变化。表面缺陷不仅影响产品的美观和舒适性,还会对其性能产生不良影响。因此,制造商对产品的表面缺陷检测非常重视。...对于一些重要的按钮,尤其是停机和上下键安装错误,很容易导致严重事故,因此迫切需要使用人工智能检测手段,引入机器视觉检测,配合AI智能化算法,有效控制产品质量,从而消除或减少缺陷产品的产生,提高生产效率。...图片一、系统架构AI视觉检测系统主要通过光源和图像传感器(工业相机)获取产品的表面图像,利用图像处理算法提取图像的特征信息,然后根据特征信息对表面缺陷的定位、识别、分类等判定与统计,通过图像采集、图像校正...二、系统功能图像采集:500万像素8帧/秒定焦定高工业相机,由算法自动处理,面板高度不同带来的对焦可调整;图像预处理:预处理算法消除每个面板的长、宽、高均不相同,模板制作的好坏、视差的高低所带来的影响。...可扩展性:该系统可不仅仅局限于检修盒面板的检测,所有可以用模板匹配方法解决的问题,都可以无缝采用该软件系统。三、系统软件检验窗口:支持查看待检设备及模板图像、检验结果等,设置系统初始化配置。

    1.4K40

    系统日报-20220318(大模型并行训练框架 Colossal-AI)

    《系统日报》持续关注分布式系统、AI System,数据库、存储、大数据等相关领域文章。每天以摘要的形式精选不超过三篇系统文章分享给大家。...以GPT3为代表的大深度学习模型是现在很火的技术,Colossal-AI 的目标就是解决大模型训练过程遇到的各种分布式难题。...最近几年的 AI 模型正在急速变大,训练常常需要需要多个 GPU,比如训练 GPT3 需要几千个 GPU。因此,在多个 GPU 上分布式训练前沿 AI 大模型已经成为业界常态。...Colossal-AI 的愿景是让用户仅需少量修改,便可将已有 PyTorch/TensorFlow 项目与 Colossal-AI 结合,快速将单机代码自动、高效地扩展为分布式系统。...Feature Map):每一层输出的中间结果,训练过程中每个神经网络层的输出。 Colossal-AI 实现的分布式训练技术包括数据并行、张量并行、流水线并行、ZeRO并行和 offload 并行。

    1.6K20

    【CVPR 2018】用狗的数据训练AI,华盛顿大学研发模拟狗行为的AI系统

    新智元报道 来源:TechCrunch 编译:肖琴 【新智元导读】一般的机器学习系统都是以人的视角建立,但华盛顿大学和艾伦人工智能研究所的研究人员试图用狗的行为数据训练AI系统。...研究人员通过传感器等设备采集了一只爱斯基摩犬的运动数据,并以此来训练AI系统实现三个目标:1、像狗一样行动,预测未来动作;2、像狗一样计划任务;3、从狗行为中学习。论文已被CVPR 2018接收。...我们已经训练机器学习系统来识别物体,进行导航,或识别面部表情,但尽管可能很难,机器学习甚至没有达到可以模拟的复杂程度,例如,模拟一只狗。...特别是,通过将这种狗的建模任务作为表示学习,我们在可行走表面预测(walkable surface estimation)和场景分类任务中得到了非常好的结果。...研究者用这个数据集来训练一个新的AI智能体。 对这个agent,给定某种感官输入——例如一个房间或街道的景象,或一个飞过的球——以预测狗在这种情况下会做什么。

    1.2K90

    好礼放送 | 当TDSQL-C遇上大模型,训练营带你玩转AI智能数据分析!

    AI电商数据分析系统,从0-1打造Serverless管理新体系,通过典型的电商案例实战,助你玩转智能数据分析!...训练营亮点 训练营内容全面,不仅深入讲解数据库与AI大模型核心技术原理,更包含动手实战应用项目 结合真实电商业务案例,手把手带你基于TDSQL-C-Serverless数据库、高性能应用服务HAI和LangChain...框架搭建AI数据分析系统,轻松实现通过自然语言,高效查询与可视化分析数据 配备详细的操作手册,保障实战无忧 训练营学习配专属社群,讲师一对一答疑 学习有奖:结营皆有鹅厂证书,前30名完成学习与实战更有腾讯定制公仔等你来拿...快来加入《AI驱动的TDSQL-C Serverless数据库技术实战营》,手把手带你基于TDSQL-C-Serverless数据库、高性能应用服务HAI和LangChain框架搭建AI数据分析系统,轻松实现通过自然语言...通过这个训练营,你不仅能将理论知识转化为实际技能,更能解锁新的可能性,让与数据的交互变得轻而易举,立即报名参营,与我们一同开启大模型时代的数据库管理新模式! -End-

    13610

    Waymo开发用于训练AI驾驶员的系统,避免各种危机状况

    在今天的一篇博客文章中,研究人员Mayank Bansal和Abhijit Ogale详细介绍了一种训练方法,可以标记数据,即来自专业加试示范的Waymo数百万英里已标记数据,以监督的方式训练AI驾驶员...我们能否使用纯粹的监督深度学习方法训练出技术熟练的驾驶员?”...Waymo的AI系统在模拟环境中绕过停着的汽车 为了创建一个能够模仿专业驾驶员的系统,他们精心设计了一个神经网络,名为ChauffeurNet,通过观察真实和模拟数据的组合,包括地图,周围物体,交通,过去的汽车运动...为了教会网络适应极端情况,团队合成了近乎意外和与对象的碰撞的情况,后者与非奖励因素搭配,鼓励AI模型避免这些情况。 ?...因此,完全由机器学习的系统取代Waymo计划器的门槛非常高,尽管来自这样一个系统的组件可以在Waymo计划器中使用,或可用于在计划器的模拟测试期间创建更现实的智能体。”

    78220

    三分钟训练眼球追踪术,AI就知道你在盯着哪个妹子 | TensorFlow.js代码

    我来训练一把 这个模型叫Lookie Lookie,不用服务器,打开摄像头就可以在浏览器上训练,不出三分钟就能养成一只小AI。 在下试了一试。...第一波,只要按20次空格,系统就提示,可以点击训练按钮了。 训练好之后,屏幕上出现一个绿圈圈。这时候,我的眼睛看哪里,绿圈圈都应该跟着我走的。 ? 可它似乎有些犹豫。...系统又提示:现在数据不太够,可能还没训练好,再取一些数据吧。 那好,再取个二三十张图,训练第二波。 果然,这次绿圈圈跑得自信了一些,左看右看它都驰骋 (比较) 如风。 ?...相比之下,对于上下移动的目光,AI的反应似乎没有那么敏锐。大概是因为,电脑屏幕上下距离不够宽,眼球转动不充分吧。 不过,在训练数据如此贫乏的前提下,神经网络也算是茁壮成长了。...AI判断你在看哪,它就出现在哪。

    5.2K40

    哪个图是机器画的? | 一个新的AI系统通过了图灵测试

    本文展示了MIT在人工智能的最新研究成果,一个新的人工智能系统,它: 1)通过了视觉图灵测试(图灵测试是什么?...---- MIT的一个研究团队研发了一个AI(人工智能系统),它可以“画”出一些看起来像字母却又不那么常见字符,从而让人类误以为“他是个人”。...通常来说,一个AI系统首先要用大量的数据进行训练,然后才能去执行任务,但人类不用,人可以轻松自如的完成一些所谓“one-shot learning”(大概是只通过一次学习,或者只用很少样本进行训练)的事情...研究人员说他们的AI系统因为使用了“贝叶斯程序学习”(Bayesian Program Learning),也可以有“one-shot learning”的能力。...答案:1,2,1;2,1,1——这些是由AI人工智能完成的。

    1.2K50

    ICLR 2025 | 多模态大模型能否胜任工业异常检测?MMAD基准揭示真相

    然而,一个有趣的现象是,AI的发展似乎率先在“高价值劳动”领域崭露头角,而在许多基础性、重复性的工作中却鲜有系统性探索。...传统检测方法 为何在AI时代“水土不服” 痛点1:死记硬背的"书呆子" 传统AI质检模型就像只会做模拟题的学生: ● 训练时见过10种划痕/物品 → 遇到第11种直接"懵圈" ● 产线调整产品型号 →...必须重新收集数据训练 ● 只能输出"合格/不合格" → 无法解释缺陷成因 痛点2:信息传递的"聋哑症" 现有系统存在严重的信息断层: 而人类质检员的核心价值,正在于能完成"看到划痕→判断类型→推测工艺问题...缺陷定位(如“缺陷位于产品哪个区域?”) 4. 缺陷描述(如“缺陷的颜色和形状如何?”) 5. 缺陷分析(如“此缺陷会导致产品失效吗?”) 6. 产品分类(如“这是哪个型号的工业零件?”)...总结 通过MMAD基准测试,我们首次系统地评估了多模态大模型在工业异常检测中的表现。虽然现有模型的表现尚不完美,但它们展现出的强大潜力令人期待。

    16710

    西澳大利亚大学研究者训练AI系统识别太空中的星系

    西澳大利亚大学的研究人员开发了一种深度学习系统,可以识别太空中的星系。这个名为ClaRAN的系统可以扫描射电望远镜拍摄的图像,并发现从黑洞发射强大射电喷流的射电星系。...该团队表示,该计划经过彻底改革和训练,可以识别星系而不是人。 ? ClaRAN观察了超过500个不同角度的射电星系数据视图,并进行检测和分类。...在扫描了不同的视图后,ClaRAN还考虑了红外望远镜的数据来改进其预测,给出了射电星系喷射系统的最终检测和分类结果。...团队使用NVIDIA Tesla GPU和cuDNN -accelerated TensorFlow深度学习框架,通过上千种世界坐标系对齐的射电和红外线图像训练卷积神经网络。...左边是一个射电星系喷射系统,ClaRAN只用射电望远镜的数据就能探测到。

    86420

    技术解析海康VM4.4版本更新了哪些内容

    传统的深度学习功能,在逐渐积累的工业大数据集的训练下,也是更为易用与智能。...这种虽然是大家广为熟知的,但在机器视觉行业最易用的,其实是小样本注册训练,就是下面介绍的。 2、小样本AI算法 VM4.4革新工业质检,简化AI技术的应用。...首先小样本AI,其实有两个模型,一个是基模型,一个是注册模型,基模型其实也是在大量的工业数据集的基础上训练出来的,它就像一个六岁的孩童,在成长过程中通过训练,认识到了很多种类的动物,比如老师,狮子,熊猫等等...小样本AI的原理同样如此,基模型相当于小孩成长过程中的经验,它基于大量工业数据集进行训练,然后我们有新的缺陷出现了,比如出现了新的划痕缺陷,此时,我们使用小样本AI工具,给他一张或者5张或者若干张的划痕缺陷的图像...最常规的数学公式就是求距离,然后得出一个相似度,看这个相似度和哪个新注册的缺陷类似,那就是那种缺陷。 大体原理是这样,简单说一下,可能更专业的实现并不是这样,但不妨碍大家理解小样本AI算法工具。

    48010

    商汤自研训练框架SenseParrots首次亮相,林达华全面解读

    也正是在这样一个艰辛的环境里面,我们深切的体会到一个好的框架对于 AI 基础核心性的作用。于是 2014 年,从商汤科技创办的第一天开始,我们就下定了决心要走自研深度学习框架的道路。...真正的 AI 工业化应用面前,它们依然有着巨大的差距。 在商汤内部的工业化的产业落地的业务里面,我们经常要表达逻辑非常复杂的模型,要把这个模型在数百张、上千张的 GPU 的大规模并行环境中进行训练。...我们看到最底层是我们的基础系统,它提供包括存储、网络、虚拟化、调度等基础系统的能力。...在这时候我们看到哪个 GPU 变慢哪个 GPU 变快了,实时地调节训练任务的部署;而且它允许动态的增删设备。...AI 模型生产的未来趋势 正如我刚才所说,技术的发展,最重要的就要把握未来的趋势。我们自己判断 AI 的发展,必然会经历三个主要的发展阶段,从实验室走向大规模的工业赋能,然后从工业赋能走向全社会。

    2.4K20
    领券