首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

用预测编码实现因果推断

贝叶斯和因果推理是智能的基本过程。贝叶斯推理模型观察:如果我们观察一个相关变量x,可以推断出关于y的什么?因果推理模型干预:如果我们直接改变x,y会如何改变?预测编码是一种受神经科学启发的方法,仅使用局部信息对连续状态变量进行贝叶斯推理。在这项工作中,我们超越了贝叶斯推理,并显示了在因果图已知的情况下,预测编码的推理过程中的简单变化如何实现干预和反事实推理。然后,我们扩展我们的结果,并显示如何预测编码可以推广到的情况下,这个图是未知的,必须从数据推断,因此执行因果发现。其结果是一种新颖而简单的技术,允许我们对基于预测编码的结构因果模型进行端到端的因果推理,并展示其在机器学习中潜在应用的效用。

03

学界 | 清华大学计算机系朱军教授:机器学习里的贝叶斯基本理论、模型和算法

AI科技评论按: 3月3日,中国人工智能学会AIDL第二期【人工智能前沿讲习班】在北京中科院自动化所举行,本期讲习班的主题为【机器学习前沿】。周志华教授担任学术主任,前来授课的嘉宾均为中国机器学习界一流专家、资深科研人员和企业精英,包括:耿新、郭天佑、刘铁岩、王立威、叶杰平、于剑、余扬、张长水、郑宇、朱军。 来自清华大学计算机科学与技术系的朱军副教授做了题为《贝叶斯学习前沿进展》的开场分享课。总共2个小时时长的课程,内容主要分为三大部分:贝叶斯基本理论、模型和算法;可扩展的贝叶斯方法;深度生成模型。本文乃三

014

不稳定变化环境中的学习

基于惊喜的学习允许代理快速适应以突然变化为特征的非平稳随机环境。我们表明,在一个层次模型中,精确的贝叶斯推理会在忘记旧的观察值和将它们与新的观察值相结合之间产生一个令人惊讶的平衡。这种调制依赖于一个概率比,我们称之为“贝叶斯因素惊奇”,它用当前信念来检验先前信念。我们证明,在几个现有的近似算法中,贝叶斯因子惊奇调制适应新观测值的速率。我们推导了三个新的基于惊讶的算法,一个属于粒子滤波器族,一个属于变分学习族,另一个属于消息传递族,它们在观测序列长度上具有恒定的标度,并且对于指数族中的任何分布具有特别简单的更新动力学。实验结果表明,这些基于惊奇的算法比替代的近似方法更好地估计参数,并且达到与计算上更昂贵的算法相当的性能水平。贝叶斯因素惊奇与香农惊奇相关但不同。在两个假设的实验中,我们对生理指标进行了可测试的预测,将贝叶斯因素惊奇与香农惊奇分离开来。将各种方法视为基于惊喜的学习的理论见解,以及所提出的在线算法,可以应用于动物和人类行为的分析,以及非静态环境中的强化学习。

03

每日论文速递 | 使用LoRA微调也会过拟合?探索LoRA中的Dropout

摘要:以显著的能力,大语言模型(LLMs)已成为许多自然语言处理应用中不可或缺的元素,而参数高效的微调,特别是 LoRA,已经因其轻量级的模型定制方法而备受青睐。与此同时,各种dropout方法,最初设计用于所有参数更新的完全微调(full weight),缓解了与过度参数冗余相关的过拟合问题。因此,由于 LoRA 的可忽略的可训练参数和先前dropout方法的有效性之间存在可能的矛盾,这一点在很大程度上被忽视了。为了填补这一空白,我们首先确认参数高效的 LoRA 也容易出现过拟合问题。然后,我们重新审视了特定于 transformer 的dropout方法,并从数学和经验上建立了它们的等价性和差异。在这种比较分析的基础上,我们引入了一个统一的框架进行全面的研究,该框架基于dropout位置、结构模式和补偿措施实例化这些方法。通过这个框架,我们揭示了当涉及到有限的可训练参数时,它们的新偏好和性能比较。这个框架还允许我们将最有利的方面融合成一种名为 HiddenKey 的新dropout方法。大量实验证实了 HiddenKey 在多个模型和任务中的显著优越性和充分性,这凸显了它作为大型语言模型的高性能和参数高效微调的首选方法。

01

【干货书】数据科学家统计学基础:R和Python实战

来源:专知本文约700字,建议阅读5分钟深入介绍了任何数据科学家都应该熟悉的统计科学主题。 《数据科学家的统计基础:使用R和Python》是一本一学期或两学期的数学统计入门教材,供培养成为数据科学家的学生使用。它深入介绍了任何数据科学家都应该熟悉的统计科学主题,包括概率分布、描述性和推理统计方法以及线性建模。这本书假设有基本的微积分知识,所以演示可以集中在“为什么它可以工作”以及“如何做它”上。然而,与传统的“数理统计”教科书相比,这本书较少强调概率论,而更强调使用软件来实现统计方法和进行模拟来说明关键概

02

Nature 神经科学 | 科学家首次发现使用动态贝叶斯推理的脑区

想象一下,房间里灯关着,黑漆漆的,你刚睡醒,想出门去。你张着双臂摸索着朝门走去,这时你会凭记忆来预测自己离门的距离,并以此决定自己脚下的步子。假如你不小心碰到了墙壁或家具,你会调整自己的预测。举这个例子是为了说明,要想掌控局势,以自身的行动来补充有限的感官输入是非常重要的。大脑如何理解诸如此类的复杂认知功能是神经科学的重要课题之一。 处理有限的感官输入在工程领域也是一个广泛存在的问题。例如,汽车导航系统能够根据车轮的转动判断当前情况,哪怕是在隧道或高空等GPS信号失灵的地方。等到GPS信号变好,导航系统能马

05
领券