import numpy as np import matplotlib.pyplot as plt labels = ['G1', 'G2', 'G3',...
这次是在上一篇的基础上增加的,所以导包这些啥的就跳过了研究了一下代码,发现主要的区别就在于增加data的时候,第二个参数传递的是一个数组,然后就变成了堆叠条形图。...最后的代码: XML布局文件: <?xml version="1.0" encoding="utf-8"?...layout_width="match_parent" android:layout_height="match_parent" android:text="这是一个堆叠条形图..." android:layout_height="150dp" /> MainActivity,这里只把堆叠图的代码放出来了...); } duiDieChart.setFitBars(true); duiDieChart.invalidate(); } } 看着这篇文章来的:
但如果我们想用长度来展示数据,为什么不直接将环状图展开,制作成堆叠条形图呢?在堆叠条形图中,条形并排展示,这样跨组比较就变得容易多了。 11....忽视堆叠条形图的重新排序 堆叠条形图在展示比例数据时非常有用,常用于展示社区结构、人口结构或混合分析等。这种视觉展示方式涉及到一系列样本,每个样本都包含多个类别的成员。...混淆堆叠条形图和均值分离图 有时候,一个图表如果试图同时展示太多信息,反而会变得混乱且效果不佳。一个典型的例子是将堆叠条形图和均值分离图混为一谈。...计算并报告了每个类别中果实的百分比。研究的问题是:化学处理是否有效? 第一个堆叠条形图作为展示比例数据的标准方式是可以接受的。...正如第一个堆叠条形图所示,化学处理显著增加了深蓝色果实的比例,减少了较浅颜色果实的比例。
一个堆叠条形图可视化的例子 在上面说到堆叠条形图的时候,我们说到,由于内部比例相对变化的问题。所以不建议用堆叠的条形图来可视化时间序列的数据。但是如果只有两个分组的话,那么就可以使用堆叠的条形图了。...例如在观察一个地方一段时间男女比例构成的时候,我们就可以使用堆叠的条形图的。 ? 对于一个连续性多分组的比例数据,如果使用堆叠的条形图的话,会是很多并排的条形,可视化效果不好。...这个时候我们就可以使用堆叠密度图来进行可视化。 例如我们在可视化健康状态和年龄的时候,其中年龄可以当作连续性变量,如下图所有,利用堆叠密度图的可视化效果还是不错的。...将比例分别可视化为总体的一部分 并排条形图的问题是,它们无法清晰地看到各个亚组相对于整体的变化,而堆叠式条形图的问题在于,由于它们具有不同的基线,因此无法轻松比较不同的条形图。...因此,我们可以通过为每个亚组绘制一个单独的图并在每个图中显示整体变化的背景来解决这两个问题。例如?这个图。 ?
前提是绘图数据已做了统计汇总); position:用于设置条形图的摆放位置,默认为'stack',表示绘制堆叠条形图;如果指定为'dodge',表示绘制水平交错条形图;如果为'fill',表示绘制百分比堆叠条形图...如果绘图数据涉及的是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。...如上图所示,可以查看组间的绝对值差异以及组内的分布特征(如2017上海天气质量为良好等级的天数最多,其次是优等级,重度污染等级的天数最少;但不管哪种空气质量等级下,1~2级的风力天数是最多的)。...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。...如上图所示,该图形的最大的好处是既可以实现数据的组内比较(如相同空气质量等级下不同风力的比较),也可以实现数据的组间比较(如相同风力下不同空气质量的比较)。
——维基百科 作为人们最常用的图表之一,柱状图也衍生出多种多样的图表形式。例如,将多个并列的类别聚类、形成一组,再在组与组之间进行比较,这种图表叫做“分组柱状图”或“簇状柱形图”。...将类别拆分称多个子类别,形成“堆叠柱状图”。再如将柱形图与折线图结合起来,共同绘制在一张图上,俗称“双轴图”,等等。...请注意:【条形图】在不同的产品或是概念解析中存在差异,例如在维基百科中,条形图等同于柱状图,认为柱状图为条形图的另一种称呼。而更多时候条形图我们可理解为专指横向的柱状图。...图片 图片 分组柱状图:由子类别来划分一组有几条柱子,形成分组柱状图。 图片 堆叠柱状图:由堆叠项将一个类别拆成多个子类别形成堆叠柱状图。...注意纵轴的底端(最右侧)是从 34 开始的,而不是 0。这意味着条形图理论上应该向下延伸到页面的底部。
一、前言二、初阶图形2.1 基本条形图2.2 水平柱状图2.3 带图例的堆叠柱状图2.4 带图例的分组柱状图2.5 ggplot作图2.6 plotly作图三、进阶图形3.1 水平柱状图3.2 显著性柱状图...3.3 堆积百分比柱状图3.4 分组柱状图四、讨论一、前言柱状图又称条形图,在统计分析中的使用频率最高,也是众多小白入门R最早绘制的可视化图形。...") #可自行更换颜色图片2.2 水平柱状图barplot(values,horiz = TRUE) #翻转图片2.3 带图例的堆叠柱状图#构建数据data 带图例的分组柱状图...R包,可以绘制点图、线图、条形图、气泡图、桑基图、甘特图、树状图等。
我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...查看下面的第二个条形图。我们要比较的第一个变量是各组得分的变化情况。我们还将性别本身与颜色编码进行了比较。看一下代码,' ydatalist '变量现在实际上是列表的列表,其中每个子列表表示不同的组。...然后我们循环遍历每一组,对于每一组,我们在x轴上画出每一个刻度的横杠,每一组也用颜色进行编码。 堆叠的条形图对于可视化不同变量的分类构成非常有用。在下面的堆叠条形图中,我们比较了每天的服务器负载。...我们循环遍历每一组,但是这次我们在旧的条形图上绘图,而不是在它们旁边画新条形图。 ? 常规条形图 ? 分组条形图 ?...实线盒的底部和顶部总是第一和第三四分位数(25%和75%的数据),而框内的带始终是第二四分位数(中位数)。虚线加上最后的条,从框中延伸出来显示数据的范围。
分组条形图 当数据集具有需要在图形上可视化的子组时,将使用分组条形图。...堆叠条形图用于显示数据集子组。...这是堆叠条形图的类型,其中每个堆叠条形显示其离散值占总值的百分比。...它用于处理来自较大数据集的不同数据组。它的每个折线图都向下阴影到 x 轴。它让每一组彼此堆叠。...简单气泡图 它是气泡图的基本类型,相当于普通气泡图。 带标签的气泡图 此气泡图上的气泡已标记,以便于识别。这是为了处理不同的数据组。 多变量气泡图 此图表有四个数据集变量。
时间变化图包括: 1.折线图 2.条形图 3.堆叠的条形图 4.K线图 5.面积图(折线图) 6.时间线 7.地平线图(折线图) 8.瀑布图 同类别分析 同类别分析是同一维度下的不同类别的数据之间比较分析...占比图表包括: 1.堆叠的条形图 2.饼图 3.甜甜圈图 4.堆积的面积图 5.矩形树图 6.旭日图 相关性图表 相关性图表显示两个或多个变量之间的相关性。...取而代之的是,使用堆叠面积图来比较一个时间维度内的多个数据类别(水平轴表示时间)。 ? 允许。 使用堆叠面积图表示多个数据,能够保持良好的可读性。3个类别的数据堆叠显示 ? 禁止。...ICON同时补充了色彩的含义。 X、Y轴数值标签 带数值标签的轴的作用是清晰地显示相应图示数据的范围和比例。例如,折线图X轴和Y轴显示一系列数值标签。 ? 条形图Y轴基准线起始值应始终从零开始。...报告板显示气候数据 监测报告板 操作报告板旨在回答一组预定义的问题。它们通常用于完成与监视有关的任务。 在大多数情况下,这些类型的报告板以当前信息为特征,这些信息被安排为一组简单的图表。
10、人口金字塔 人口金字塔 (Population Pyramid) 也称为「年龄性别金字塔」,是彼此背靠背的一对直方图,显示所有年龄组和男女人口的分布情况。...多组条形图通常用来将分组变量或类别与其他数据组进行比较,也可用来比较迷你直方图,每组内的每个条形将表示变量的显著间隔。 但缺点是,当有太多条形组合在一起时将难以阅读。...13、堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...会显示每组占总体的百分比,并按该组每个数值占整体的百分比来绘制,可用来显示每组中数量之间的相对差异。
) 柱状图多子图 # 柱状图多子图 df.plot.bar(subplots=True, rot=0) 条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...np.random.randn(1000)) data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4)) 箱线图 箱线图又称盒须图、箱型图等,用于显示一组数据分布情况的统计图...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示在直角坐标系上...,x/y及z,其中x/y表示位置、z的值用于颜色区分 df.plot.scatter(x="a", y="b", c="c", s=50) # 参数s代表散点大小 一组数据,然后分类并用不同颜色(色系下
饼形图将一个圆圈分成多个切片,以使每个切片的面积与其所占总数的比例成比例。同样的,我们可以在矩形上执行相同的步骤,结果是堆积的条形图。...我们可以根据矩形是垂直还是水平分为,垂直堆叠的条形图或水平堆叠的条形图。 ? 进一步的,我们还可以将?的条形图的每一个小部分并排放置,而不是将它们堆叠在一起。...这种可视化功能可以更轻松地对这三个组进行直接比较。但是,在并排的条形图中,每个条形与总数的关系在视觉上并不明显。 ? 对于以上三种可视化比例的图形而言。基本上可以用下面的表格来说明其主要的适用标准。...一个并排条形图的例子 我们在上面提到过说,对于并排的条形图在进行不同比例之间的变化的比较时以及时间序列比较时是具有优势的。这里我们就用一个例子来说明这样可视化的好处。...而且由于条形跨年相对变化的关系,很难比较B,C和D公司跨年的市场份额, ? 对于此假设数据集,并排条形图是最佳选择。
为了解决答案缺失的问题,作者首先开发了带缺失标签的学习(LML)策略,它大致上排除了缺失的答案。...为了缓解无意义的答案问题,作者设计了带条件混合标签的学习(LCL)策略,该策略进一步利用语言类型的先决条件,迫使新混合的样本对拥有属于同一类别的合理答案。...在MixUp中,按随机权重缩放的两幅图像被线性组合,它们对应的标签用相同的权重进行融合。在VQAMix中,两个图像-问题对进行线性组合。 一、研究方法 1. 三元组混合 图片 2....带条件的三元组混合 2.1学习缺失标签 为了处理标签缺失问题,本文提出了一种简单直接的策略Learning with missing Labels (LML),直接丢弃这些标签,表示为: 使用这种策略...作为一种通用的解决方案,VQAMix可以进一步运用于各类多模态数据的增强与正则化(例如:分子/蛋白质数据,病理图像/基因组数据),具有很高的现实意义。
条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh(figsize=(6,8)) ?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...箱线图 箱线图又称盒须图、箱型图等,用于显示一组数据分布情况的统计图。...默认情况下,面积图是堆叠的 # 默认是堆叠 df.plot.area() ? 单个面积图 df.a.plot.area() ?...一组数据,x/y及z,其中x/y表示位置、z的值用于颜色区分 df.plot.scatter(x="a", y="b", c="c", s=50) # 参数s代表散点大小 ?
从技术上讲,Pandas 的 plot() 方法通过 kind 关键字参数提供了一组绘图样式,以此来创建美观的绘图。kind 参数的默认值是行字符串值。...默认情况下显示图例的图例,但是我们可以将 legend 参数设置为 false 来隐藏图例。 条形图 条形图是一种基本的可视化图表,用于比较数据组之间的值并用矩形条表示分类数据。...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果...箱线图传达的信息非常有用,例如四分位距 (IQR)、中位数和每个数据组的异常值。...,通过将 False 分配给堆叠参数来取消堆叠面积图是一项常见任务: df.plot(kind='area', stacked=False, figsize=(9,6)) Output: 饼图 如果我们对比率感兴趣
2、带边界的气泡图(Bubble plot with Encircling) 有时,您希望在边界内显示一组点以强调其重要性。...然而,与发散型条形图 (Diverging Bars)相比,条的缺失减少了组之间的对比度和差异。...13、带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种对差异进行可视化的灵活方式...也可以看成堆叠图的形式,同样适用于空气质量的分级。 21、类型变量的直方图 (Histogram for Categorical Variable) 类型变量的直方图显示该变量的频率分布。...42、带有误差带的时间序列 (Time Series with Error Bands) 如果您有一个时间序列数据集,每个时间点(日期/时间戳)有多个观测值,则可以构建带有误差带的时间序列。
当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...常规条形图 分组条形图允许我们比较多个类别变量。如下图所示,我们第一个变量会随不同的分组(G1、G2 等)而变化,我们在每一组上比较不同的性别。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...绘制该图的代码与分组条形图有相同的风格,我们循环地遍历每一组,但我们这次在旧的柱体之上而不是旁边绘制新的柱体。 ?
您还可以通过如下图所示的对组进行颜色编码来查看不同数据组的这种关系。 ? 想要可视化三个变量之间的关系吗?!...使用条形图(而不是散点图)可以让我们清楚地看到每个箱子频率之间的相对差异。...条形图 当您试图将类别很少(可能少于10个)的分类数据可视化时,条形图是最有效的。如果我们有太多的类别,那么图中的条形图就会非常混乱,很难理解。...它们非常适合分类数据,因为您可以根据条形图的大小;分类也很容易划分和颜色编码。我们将看到三种不同类型的条形图:常规的、分组的和堆叠的: ?...堆叠图代码举例: for i in range(0, len(y_data_list)): bar(x_data + alteration[i], y_data_list[i], color
当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...常规条形图 分组条形图允许我们比较多个类别变量。如下图所示,我们第一个变量会随不同的分组(G1、G2 等)而变化,我们在每一组上比较不同的性别。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...绘制该图的代码与分组条形图有相同的风格,我们循环地遍历每一组,但我们这次在旧的柱体之上而不是旁边绘制新的柱体。
领取专属 10元无门槛券
手把手带您无忧上云