x, y_line, '-o', color='y') [0d23ad19173e1e463c3bfaf0ed69a91b.png] 使用 Seaborn 完成图像快速优化。...import seaborn as sns sns.set() # 声明使用 Seaborn 样式 plt.bar(x, y_bar) plt.plot(x, y_line, '-o', color...、jointplot、pairplot 回归图——regplot、lmplot 矩阵图——heatmap、clustermap 组合图 接下来,我们通过『鸢尾花示例数据集』进行演示,使用 Seaborn...[79ec6b6507390083363530cffa228192.png] 3.1 关联图 当我们需要对数据进行关联性分析时,可能会用到 Seaborn 提供的以下几个 API。...例如,上方 relplot 绘制的图也可以使用 lineplot 函数绘制,只要取消 relplot 中的 kind 参数即可。
内置的统计图形:Seaborn提供了一系列内置的统计图形,例如柱状图、箱线图、散点图、折线图等。这些图形不仅易于使用,还具有各种选项和参数,可以帮助你更好地展示和理解数据。...数据集可视化:Seaborn还包含一些内置的示例数据集,这些数据集可以直接在库中使用。你可以使用这些数据集来快速生成演示图表,同时也可以将它们作为学习和实践的基础。...统计功能增强:Seaborn提供了许多额外的统计功能,使得数据探索更加方便。例如,你可以使用Seaborn轻松地绘制分布图、拟合回归线、绘制核密度图等。...多变量数据可视化:Seaborn提供了一些强大的工具来可视化多变量数据。你可以使用Seaborn绘制矩阵图、热力图、聚类图等,以揭示不同变量之间的关系和模式。...分类图sns.catplot 多图网格sns.FaceGrid 希望帮助读者快速上手seaborn绘图,文章有点长,欢迎点赞收藏。
seaborn了,首先在环境中安装一下: # bash终端 # 安装模块 conda activate sc pip install seaborn -i https://mirrors.tuna.tsinghua.edu.cn...和matplotlib 关系: Seaborn是基于Matplotlib的统计数据可视化库 Seaborn是Matplotlib的高级封装 Seaborn可以直接使用Matplotlib的方法 优缺点:...点图:scatterplot 箱线图:boxplot 点图+趋势线:regplot 热图:clustermap、heatmap 多图叠加:直接连续写绘图代码 拼图:plt.subplots 0、库的安装和示例数据读取...') sns.heatmap(data,cmap='coolwarm') 5、多图叠加 import seaborn as sns import matplotlib.pyplot as plt plt.figure...load_dataset包含有三个参数: name: str,代表数据集名字; cache: boolean,当为True时,从本地加载数据,反之则从网上下载; data_home: string,代表本地数据的路径
Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,应该把Seaborn视为matplotlib的补充...seaborn内置了不少样例数据,为dataframe类型,如果要查看数据,可以使用类似df.head()命令查看 lmplot(回归图) lmplot是用来绘制回归图的,通过lmplot我们可以直观地总览数据的内在关系...=5, data=iris) # 使用自定义轴标签 g.set_axis_labels("Sepal length (mm)", "Sepal width (mm)") ?...distplot(单变量分布直方图) 在seaborn中想要对单变量分布进行快速了解最方便的就是使用distplot()函数,默认情况下它将绘制一个直方图,并且可以同时画出核密度估计(KDE)。...在seaborn中,最简单的实现方式是使用jointplot()函数,它会生成多个面板,不仅展示了两个变量之间的关系,也在两个坐标轴上分别展示了每个变量的分布。
聚类图聚类图是一种将数据点按照它们的相似性分组的图表类型。Seaborn 中的 clustermap 函数可以帮助我们创建聚类图。...树地图树地图是一种用于可视化层次结构数据的图表类型,它通过矩形的面积来表示不同层次的数据量。Seaborn 中没有直接支持树地图的函数,但我们可以使用 Matplotlib 来绘制。...分类数据图分类数据图用于可视化分类变量之间的关系,通常用于比较不同类别之间的差异和分布。Seaborn 中的 catplot 函数可以用于绘制分类数据图,支持多种不同类型的图表,如柱状图、箱线图等。...Seaborn 中的 jointplot 函数可以绘制统计关系图,支持不同的绘图风格,如散点图、核密度估计图等。...通过掌握 Seaborn 的使用技巧,并将其应用到实际的数据分析和可视化工作中,我们能够更好地理解和解释数据,从而为决策提供更有力的支持。
面向数据集的接口:Seaborn 的函数通常接受数据集(如 pandas DataFrame)作为输入,使得绘图过程更加直观。...热图和集群图:Seaborn 可以绘制热图(heatmap)来展示变量之间的关系,以及使用集群图(clustermap)来展示数据集的层次结构。...交互式图表:虽然 Seaborn 本身不支持交互式图表,但它可以与交互式图表库(如 Plotly 或 Bokeh)结合使用,以创建交互式图形。...多平台支持:Plotly 可以在多种平台上使用,包括 Jupyter 笔记本、网页应用、移动设备等。...丰富的自定义选项和交互功能:Pygal 提供了丰富的自定义选项,允许用户调整图表的颜色、字体、轴标签等,同时支持添加数据标签、图例、注释、动画效果和交互功能。
在下一节中,我们将学习如何在 Pandas 数据帧中进行数据集索引。 在 Pandas 数据帧中建立索引 在本节中,我们将探讨如何设置索引并将其用于 Pandas 中的数据分析。...我们将学习如何在读取数据后以及读取数据时在DataFrame上设置索引。 我们还将看到如何使用该索引进行数据选择。...在本节中,我们探讨了如何设置索引并将其用于 Pandas 中的数据分析。 我们还学习了在读取数据后如何在数据帧上设置索引。 我们还看到了如何在从 CSV 文件读取数据时设置索引。...重命名 Pandas 数据帧中的列 在本节中,我们将学习在 Pandas 中重命名列标签的各种方法。 我们将学习如何在读取数据后和读取数据时重命名列,并且还将看到如何重命名所有列或特定列。...我们正在使用 seaborn 的lmplot方法。 然后,我们从数据集中传递两个列名称为x和y,并将 data 参数设置为我们的 Pandas 数据帧。
直观来看,当残差结果随机分布于y=0上下较小的区间时,说明具有较好的回归效果。...这里以seaborn中的小费数据集进行绘制,得到如下回归图表: 5. 矩阵图 矩阵图主要用于表达一组数值型数据的大小关系,在探索数据相关性时也较为实用。...clustermap 在heatmap的基础上,clustermap进一步挖掘各行数据间的相关性,并逐一按最小合并的原则进行聚类,给出了聚类后的热力图: ---- 分类数据 1....散点图 分类数据散点图接口主要用于当一列数据是分类变量时。相比于两列数据均为数值型数据,可以想象分类数据的散点图将会是多条竖直的散点线。...注:当x轴分类变量为连续日期数据时,选用pointplot得到的绘图意义更为明确;而对于其他分类型变量,则选用barplot更为合适。
这类似于使用列对电子表格中的数据进行排序的方式。 熟悉 .sort_index() 您用于.sort_index()按行索引或列标签对 DataFrame 进行排序。...查看突出显示的索引,您可以看到行的顺序不同。这是因为quicksort不是稳定的排序算法,而是mergesort。 注意:在 Pandas 中,kind当您对多个列或标签进行排序时会被忽略。...在这个例子中,您排列数据帧由make,model和city08列,与前两列按照升序排序和city08按降序排列。...这在其他数据集中可能更有用,例如列标签对应于一年中的几个月的数据集。在这种情况下,按月按升序或降序排列数据是有意义的。 在 Pandas 中排序时处理丢失的数据 通常,现实世界的数据有很多缺陷。...通常,这是使用 Pandas 分析数据的最常见和首选方法,因为它会创建一个新的 DataFrame 而不是修改原始数据。这允许您保留从文件中读取数据时的数据状态。
索引在另一重要方面类似于 Python 集。 它们(通常)是使用哈希表实现的,当从数据帧中选择行或列时,哈希表的访问速度非常快。...当使用加法运算符将两个序列加在一起并且一个索引标签没有出现在另一个索引标签中时,结果值始终会丢失。...在此特定实例中,当添加两个序列时,无论是否使用fill_value参数,索引标签仍将对应于缺失值。...分组后删除多重索引 不可避免地,当使用groupby时,您可能会在列或行或两者中都创建多重索引。 具有多重索引的数据帧更加难以导航,并且有时列名称也令人困惑。...与append方法相比,就地进行此修改使此索引运算符的使用风险更高,该方法从未修改原始调用数据帧。 任何有效的标签都可以与.loc索引运算符一起使用,如步骤 3 所示。
机器学习的主要类型 监督学习 给定带有标签的数据集,学习如何预测未知数据的标签 无监督学习 没有标签的数据集,目标是从数据中发现潜在的结构 半监督学习 介于监督学习和无监督学习之间,数据集包含少量带标签的数据和大量未带标签的数据...4.古典概率: 当所有可能的结果都等可能发生时,事件A的概率定义为: 5.条件概率: 事件B发生条件下事件A发生的概率定义为: 6.独立事件: 若 则事件A和B相互独立。...当 ( n = 10 ),( p = 0.3 ),( k = 3 ) 时, 。 例题 3: 给定两个随机变量X和Y,它们的协方差 , , 计算它们的相关系数。...') # 显示图表 plt.show() 更多高级图形 Seaborn 提供了许多高级图形,如热力图、箱型图、小提琴图等。...data=tips) # 显示图表 plt.show() 若运行代码时出现错误: 检查网络连接:确保你的计算机连接到互联网且没有网络限制(访问国外网站) 使用代理:如果你在公司或学校网络中,可能需要配置代理
,比如当传入2个变量时绘制的即为热力图效果。...pairplot 当变量数不止2个时,pairplot是查看各变量间分布关系的首选。它将变量的任意两两组合分布绘制成一个子图,对角线用直方图、而其余子图用相应变量分别作为x、y轴绘制散点图。...直观来看,当残差结果随机分布于y=0上下较小的区间时,说明具有较好的回归效果。 ?...这里以seaborn中的小费数据集进行绘制,得到如下回归图表: ? 5. 矩阵图 矩阵图主要用于表达一组数值型数据的大小关系,在探索数据相关性时也较为实用。...散点图 分类数据散点图接口主要用于当一列数据是分类变量时。相比于两列数据均为数值型数据,可以想象分类数据的散点图将会是多条竖直的散点线。
在许多应用程序中,数据可能分布在许多文件或数据库中,或者以不便于分析的形式排列。本章重点介绍帮助组合、连接和重新排列数据的工具。...注意 当您在列上进行列连接时,传递的 DataFrame 对象的索引会被丢弃。如果需要保留索引值,可以使用reset_index将索引附加到列中。 合并操作中要考虑的最后一个问题是处理重叠列名的方式。...8.3 重塑和旋转 有许多用于重新排列表格数据的基本操作。这些操作被称为重塑或旋转操作。 使用分层索引进行重塑 分层索引提供了在 DataFrame 中重新排列数据的一致方法。...您还可以使用 sharex 和 sharey 指示子图应具有相同的 x 或 y 轴。当您在相同比例上比较数据时,这可能很有用;否则,matplotlib 会独立自动缩放绘图限制。...您可以从其基本组件中组装图表:数据显示(即绘图类型:线条、柱状图、箱线图、散点图、等高线图等)、图例、标题、刻度标签和其他注释。 在 pandas 中,我们可能有多列数据,以及行和列标签。
图表属性设置 在使用 Matplotlib 时,可以对图表的各种属性进行详细设置,例如: 设置图片大小和分辨率 描述信息,比如 x 轴和 y 轴表示什么 调整刻度的间距 线条样式(颜色、粗细等) 5....frames:帧的数量或帧的数据。 init功能(可选):初始化每一帧的函数。 interval:每帧之间的时间间隔(以毫秒为单位)。 blit:布尔值,表示是否只重新绘制变化的部分。...例如,可以使用紧缩布局(tight_layout)方法来优化图形的布局,使各个子图之间不会相互干扰。此外,还可以通过代码实现多图排列,如使用OpenCV和matplotlib结合实现多图排列。...自定义文字作为坐标轴标签,以及个性化定制坐标轴刻度(如刻度样式和文字刻度)。 如何在Matplotlib中导出图片为PDF、SVG等格式?...基本绘图命令:Matplotlib提供了多种绘图命令,如text(), xlabel(), ylabel(), title()等,用于在图表中添加文字、轴标签和标题。
plt.subplots:一次创建整个网格 在创建大型子图网格时,刚才描述的方法会变得相当繁琐,特别是如果你想在内部绘图上隐藏x轴和y轴标签。...为此,plt.subplots()是更容易使用的工具(注意subplots末尾的s)。 该函数不创建单个子图,而是在一行中创建完整的子图网格,并在 NumPy 数组中返回它们。...生成的轴域网格实例在 NumPy 数组中返回,允许使用标准数组索引表示法,方便地指定所需的轴域: # ax 是二维数组,由 [row, col] 索引 for i in range(2): for...我最经常在创建多轴域直方图时使用它,如下图所示: # 创建一些正态分布的数据 mean = [0, 0] cov = [[1, 1], [1, 2]] x, y = np.random.multivariate_normal...() 这种类型的分布与其外边距一起绘制,这是很常见的,它在 Seaborn 包中有自己的绘图 API; 详细信息请参阅“使用 Seaborn 进行可视化”。
当y值的影响因素不唯一时,采用多元线性回归模型。...pandas的两个主要数据结构:Series和DataFrame: Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。...,和数据库某个表中的第一列类似。...数据集一共有200个观测值,每一组观测对应一个市场的情况。 注意:这里推荐使用的是seaborn包。网上说这个包的数据可视化效果比较好看。其实seaborn也应该属于matplotlib的内部包。...线性模型表达式: 其中 y是响应 在这个案例中: (1)、使用pandas来构建X(特征向量)和y(标签列) scikit-learn要求X是一个特征矩阵,y是一个NumPy向量。
开发团队在五个模拟聚类基准数据集和一个由STARmap收集的代表性原位转录组数据中测试了ClusterMap的性能。...ClusterMap在小鼠初级皮质(V1)生成细胞类型和组织区域图:即使是密集的小鼠V1皮质细胞,细胞分割也清晰可见;与人工注释的分割标签相比,ClusterMap细胞标签的准确率达到80~90%;在小鼠...ClusterMap在小鼠胎盘中生成细胞类型和组织区域图:鉴定了多达7224个细胞,通过使用Louvain算法将其聚类为12种细胞类型,其标记基因与scRNA-seq定义的细胞类型一致;ClusterMap...除了空间转录组数据外,ClusterMap还可以被推广应用于其他二维和三维映射的高维离散信号(如蛋白质或活细胞成像数据)。.../ClusterMap 首发公号:国家基因库大数据平台 参考文献 He, Y., Tang, X., Huang, J. et al.
第三个挑战是你不确定什么时候该使用 Matplotlib,什么时候该使用基于 Matplotlib 构建的工具,如 pandas 或 seaborn。...开始 下面主要介绍如何在 pandas 中创建基础的可视化以及使用 Matplotlib 定制最常用的项。了解基础流程有助于更直观地进行自定义。...数据包括 2014 年的销售交易额。为简短起见,我将总结这些数据,列出前十名客户的采购次数和交易额。绘图时我将对各列进行重命名。...一些自定义(如添加标题和标签)可以使用 pandas plot 函数轻松搞定。但是,你可能会发现自己需要在某个时刻跳出来。...我还使用 sharey=True 以使 y 轴共享相同的标签。 该示例很灵活,因为不同的轴可以解压成 ax0 和 ax1。
领取专属 10元无门槛券
手把手带您无忧上云