首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

向量化操作简介和Pandas、Numpy示例

Pandas是一种流行的用于数据操作的Python库,它提供了一种称为“向量化”的强大技术可以有效地将操作应用于整个列或数据系列,从而消除了显式循环的需要。...向量化是将操作应用于整个数组或数据系列的过程,而不是逐个遍历每个元素。在Pandas中可以对整个列或Series执行操作,而无需编写显式循环。...2、apply 向量化还允许对列应用自定义函数。...3、条件操作 也将矢量化用于条件操作,比如基于列a中的条件创建一个新的列D: import pandas as pd data = {'A': [1, 2, 3]} df = pd.DataFrame...所以无论是在处理基本算术、自定义函数还是条件操作,利用向量化都可以极大地改进数据分析工作流。

87220
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    1000+倍!超强Python『向量化』数据处理提速攻略

    第一个参数是逻辑条件Numpy,它将为数组中的每个元素计算一个布尔数组。当条件满足且为True时,将返回第二个参数,否则返回第三个参数。...它向量化了你的函数,而不一定是这个函数如何应用于你的数据,这有很大的不同!...我们可以使用它的一种方式,包装我们之前的函数,在我们传递列时不起作用的函数,并向量化它。它比.apply()快得多,但也比.where()慢了17倍。...那么嵌套的多个条件,我们可以向量化吗?可以! 代码: 基本上,当使用np.select()时。...用np.vectorize()时: 同时,当使用向量化方法处理字符串时,Pandas为我们提供了向量化字符串操作的.str()。

    6.8K41

    深入理解pandas读取excel,tx

    当header =None 或者没有设置header的时候有效 mangle_dupe_cols 默认为True,重复的列将被指定为’X.0’…’X.N’,而不是’X’…’X’。...如果传入False,当列中存在重复名称,则会导致数据被覆盖。...注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效) delim_whitespace New in version...read_csv函数过程中常见的问题 有的IDE中利用Pandas的read_csv函数导入数据文件时,若文件路径或文件名包含中文,会报错。...当分隔符并不是单个的空格,也许有的是一个空格有的是多个空格时,如果这个时候还是采用sep=" "来读取文件,也许你就会得到一个很奇怪的数据,因为它会将空格也做为数据。

    6.2K10

    深入理解pandas读取excel,txt,csv文件等命令

    当header =None 或者没有设置header的时候有效 mangle_dupe_cols 默认为True,重复的列将被指定为’X.0’…’X.N’,而不是’X’…’X’。...如果传入False,当列中存在重复名称,则会导致数据被覆盖。...注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效) delim_whitespace New in version...有的IDE中利用Pandas的read_csv函数导入数据文件时,若文件路径或文件名包含中文,会报错。...当分隔符并不是单个的空格,也许有的是一个空格有的是多个空格时,如果这个时候还是采用sep=" "来读取文件,也许你就会得到一个很奇怪的数据,因为它会将空格也做为数据。

    12.3K40

    python数据科学系列:pandas入门详细教程

    或字典(用于重命名行标签和列标签) reindex,接收一个新的序列与已有标签列匹配,当原标签列中不存在相应信息时,填充NAN或者可选的填充值 set_index/reset_index,互为逆操作,...切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。由于pandas是带标签的数组,所以在广播过程中会自动按标签匹配进行广播,而非类似numpy那种纯粹按顺序进行广播。...apply,既适用于series对象也适用于dataframe对象,但对二者处理的粒度是不一样的:apply应用于series时是逐元素执行函数操作;apply应用于dataframe时是逐行或者逐列执行函数操作

    15.1K20

    初学者的10种Python技巧

    对于单行-if,我们从测试条件为真时要输出的值开始。 此代码将单行(如果具有列表理解)组合以输出1(其中植物是兰花),否则输出0。...#8 —将lambda应用于DataFrame列 pandas DataFrame是一种可以保存表格数据的结构,例如Excel for Python。...#7-将条件应用于多列 假设我们要确定哪些喜欢巴赫的植物也需要充足的阳光,因此我们可以将它们放在温室中。...函数sunny_shelf接受两个参数作为其输入-用于检查“full sun”的列和用于检查“ bach”的列。函数输出这两个条件是否都成立。...在第4行,我们 将此函数.apply()应用于DataFrame并指定应将哪些列作为参数传递。 axis=1 告诉pandas它应该跨列评估函数(与之相对 axis=0,后者跨行评估)。

    2.9K20

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    import numpy as np import pandas as pd 1. Query 我们有时需要根据条件筛选数据,一个简单方法是query函数。...当 frac=0.5时,将随机返回一般的数据。 sample2 = df.sample(frac=0.5) sample2 ? 为了获得可重复的样品,我们可以指定random_state参数。...如果将整数值传递给random_state,则每次运行代码时都将生成相同的采样数据。 5. Where where函数用于指定条件的数据替换。如果不指定条件,则默认替换值为 NaN。...下述代码实现选择前三行前两列的数据(loc方式): df.loc[:2,['group','year']] ? 注:当使用loc时,包括索引的上界,而使用iloc则不包括索引的上界。...df.year.nunique() 10 df.group.nunique() 3 我们可以直接将nunique函数应用于dataframe,并查看每列中唯一值的数量: ?

    5.7K30

    还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法

    作者:xiaoyu 知乎:https://zhuanlan.zhihu.com/pypcfx 介绍:一个半路转行的数据挖掘工程师 ▍前言 当大家谈到数据分析时,提及最多的语言就是Python和SQL。...因此,按照我们正常的做法就是使用apply方法写一个函数,函数里面写好时间条件的逻辑代码。...Pandas的.apply方法接受函数(callables)并沿DataFrame的轴(所有行或所有列)应用它们。...如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格(df ['energy_kwh'] * 28),类似这种。...Pandas的 HDFStore 类允许你将DataFrame存储在HDF5文件中,以便可以有效地访问它,同时仍保留列类型和其他元数据。

    3.5K10

    30 个小例子帮你快速掌握Pandas

    我们删除了4列,因此列数从14减少到10。 2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。如果您事先知道列名,则比以后删除更好。...查询函数提供了一种更灵活的条件传递方式。...14.将不同的汇总函数应用于不同的组 我们不必对所有列都应用相同的函数。例如,我们可能希望查看每个国家/地区的平均余额和流失的客户总数。 我们将传递一个字典,该字典指示哪些函数将应用于哪些列。...第一个参数是位置的索引,第二个参数是列的名称,第三个参数是值。 19.where函数 它用于根据条件替换行或列中的值。默认替换值是NaN,但我们也可以指定要替换的值。...但是,这可能会导致不必要的内存使用,尤其是当分类变量的基数较低时。 低基数意味着与行数相比,一列具有很少的唯一值。例如,Geography列具有3个唯一值和10000行。

    10.8K10

    Pandas的apply方法的应用练习

    1.使用自定义函数的原因  Pandas虽然提供了大量处理数据的API,但是当提供的API无法满足需求的时候,这时候就需要使用自定义函数来解决相关的问题  2....,当原来的元素大于10的时候,将新列里面的值赋0  import pandas as pd # 自定义函数 def process_data(x): if x > 10: return...df['new_column'] = df['column1'].apply(process_data) 3.请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列...,并将结果存储在'Overall Score'列中,然后使用apply方法将该函数应用于DataFrame的每一行 # 编写函数将学生成绩相加 def calculate_overall_score(row...= row['Math Score'] + row['English Score'] + row['Science Score'] return row # 使用apply方法将该函数应用于

    11210

    Pandas 2.2 中文官方教程和指南(一)

    使用loc/iloc时,逗号前面的部分是你想要的行,逗号后面的部分是你想要选择的列。 当使用列名、行标签或条件表达式时,请在选择括号[]前面使用loc运算符。...当特别关注表中位置的某些行和/或列时,请在选择括号[]前使用iloc运算符。 使用loc或iloc选择特定行和/或列时,可以为所选数据分配新值。...,isin()条件函数对于每一行数值在提供的列表中时返回True。...在使用loc/iloc时,逗号前面的部分是您想要的行,逗号后面的部分是您要选择的列。 当使用列名称、行标签或条件表达式时,请在选择括号[]前使用loc运算符。...当特别关注表中位置的某些行和/或列时,请在选择括号[]前使用iloc运算符。 在使用loc或iloc选择特定行和/或列时,可以为所选数据分配新值。

    98410

    Pandas数据应用:库存管理

    有效的库存管理可以降低企业成本,提高资金周转率,增强企业的竞争力。Pandas作为Python中强大的数据分析工具,在处理库存管理相关问题时具有极大的优势。...对于Excel文件,使用pandas.read_excel()函数;对于CSV文件,使用pandas.read_csv()函数。...例如:# 查询库存数量小于10的商品low_stock_items = df[df['quantity'] 条件组合查询当查询条件比较复杂时,如查询库存数量小于...complex_query = df[(df['quantity'] 50)]print(complex_query)三、常见报错及解决方案(一)KeyError原因当尝试访问不存在的列名时...如果确实需要添加新列,可以使用df['new_column'] = value的方式。(二)ValueError原因在进行数据类型转换时,如果数据不符合目标类型的要求,就会引发ValueError。

    12410
    领券