首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

忽略缺失值计算pyspark数据框列的百分位数

可以通过使用pyspark的统计函数来实现。具体步骤如下:

  1. 导入必要的模块和函数:
代码语言:txt
复制
from pyspark.sql import SparkSession
from pyspark.sql.functions import expr
  1. 创建SparkSession对象:
代码语言:txt
复制
spark = SparkSession.builder.getOrCreate()
  1. 加载数据集并创建数据框:
代码语言:txt
复制
df = spark.read.csv("data.csv", header=True, inferSchema=True)

其中,"data.csv"是数据集的文件路径,header=True表示第一行是列名,inferSchema=True表示自动推断列的数据类型。

  1. 忽略缺失值并计算百分位数:
代码语言:txt
复制
percentile = df.selectExpr("percentile_approx(column_name, 0.25)").collect()[0][0]

其中,column_name是要计算百分位数的列名,0.25表示要计算的百分位数,可以根据需求进行调整。

  1. 打印结果:
代码语言:txt
复制
print("忽略缺失值计算的百分位数为:", percentile)

以上代码中的column_name需要替换为实际要计算百分位数的列名。此外,还可以根据具体需求使用其他百分位数函数,如percentile_approx、percentile、percentile_cont等。

推荐的腾讯云相关产品:腾讯云计算服务(Tencent Cloud Computing Services) 产品介绍链接地址:https://cloud.tencent.com/product

请注意,以上答案仅供参考,具体实现方式可能因环境和需求而异。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【Python】基于某些列删除数据框中的重复值

subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...结果和按照某一列去重(参数为默认值)是一样的。 如果想保留原始数据框直接用默认值即可,如果想直接在原始数据框删重可设置参数inplace=True。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

20.5K31

【Python】基于多列组合删除数据框中的重复值

最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。

14.7K30
  • ElasticSearch 如何使用 TDigest 算法计算亿级数据的百分位数?

    ElasticSearch 如何使用 TDigest 算法计算亿级数据的百分位数? 大家好,我是历小冰。...n 个数据按数值大小排列,处于 p% 位置的值称第 p 百分位数。...百分位数 ElasticSearch 可以使用 percentiles 来分析指定字段的百分位数,具体请求如下所示,分析 logs 索引下的 latency 字段的百分位数,也就是计算网站请求的延迟百分位数...它们表示了人们感兴趣的常用百分位数值,极端的百分位数在范围的两边,其他的一些处于中部。具体的返回值如下图所示,我们可以看到最小延时在 75ms 左右,而最大延时差不多有 600ms。...对于少量数据,在内存中维护一个所有值的有序列表, 就可以计算各类百分位数,但是当有几十亿数据分布在几十个节点时,这类算法是不现实的。

    3.7K00

    ElasticSearch 如何使用 TDigest 算法计算亿级数据的百分位数?

    n 个数据按数值大小排列,处于 p% 位置的值称第 p 百分位数。...百分位数 ElasticSearch 可以使用 percentiles 来分析指定字段的百分位数,具体请求如下所示,分析 logs 索引下的 latency 字段的百分位数,也就是计算网站请求的延迟百分位数...它们表示了人们感兴趣的常用百分位数值,极端的百分位数在范围的两边,其他的一些处于中部。 具体的返回值如下图所示,我们可以看到最小延时在 75ms 左右,而最大延时差不多有 600ms。...对于少量数据,在内存中维护一个所有值的有序列表, 就可以计算各类百分位数,但是当有几十亿数据分布在几十个节点时,这类算法是不现实的。...对应的,计算百分位数也只需要从这些质心数中找到对应的位置的质心数,它的平均值就是百分位数值。 ? 很明显,质心数的个数值越大,表达它代表的数据越多,丢失的信息越大,也就越不精准。

    1.1K30

    独家 | 一文读懂PySpark数据框(附实例)

    大卸八块 数据框的应用编程接口(API)支持对数据“大卸八块”的方法,包括通过名字或位置“查询”行、列和单元格,过滤行,等等。统计数据通常都是很凌乱复杂同时又有很多缺失或错误的值和超出常规范围的数据。...因此数据框的一个极其重要的特点就是直观地管理缺失数据。 3. 数据源 数据框支持各种各样地数据格式和数据源,这一点我们将在PySpark数据框教程的后继内容中做深入的研究。...数据框的特点 数据框实际上是分布式的,这使得它成为一种具有容错能力和高可用性的数据结构。 惰性求值是一种计算策略,只有在使用值的时候才对表达式进行计算,避免了重复计算。...数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3....这里,我们将要基于Race列对数据框进行分组,然后计算各分组的行数(使用count方法),如此我们可以找出某个特定种族的记录数。 4.

    6K10

    在Python中进行探索式数据分析(EDA)

    根据以上结果,我们可以看到python中的索引从0开始。 底部5行 ? 要检查数据框的维数,让我们检查数据集中存在的行数和列数。...由于列的名称很长,让我们重命名它们。 重命名列 ? 删除列 ? 删除数据框不需要的列。数据中的所有列不一定都相关。在这个数据中,受欢迎程度、门的数量、车辆大小等列不太相关。...所以从数据集中删除这些变量。 缺失值: ? 上述结果表明,在12个变量中,Fuel_type、HP和cylinder这3个变量有缺失值。 让我们检查一下列中缺失数据的百分比 ?...有许多方法可以处理这些缺失的值。 1. 删除 2. 插补 我们可以删除存在缺失值的行,也可以将缺失值替换为平均值,中位数或众数等值。 由于丢失的数据百分比非常少,我们可以从数据集中删除那些行。 ?...根据箱形图,超出Q1(25个百分位数)和Q3(75个百分位数)或IQR(四分位数间距)范围之外的任何观测值均被视为异常值。 如果数据集中存在大量异常值,则必须对异常值进行处理。

    3.3K30

    R语言第二章数据处理⑤数据框列的转化和计算目录正文

    正文 本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数: Mutate():计算新变量并将其添加到数据表中。 它保留了现有的变量。...Transmutate():计算新列但删除现有变量。...同时还有mutate()和transmutate()的三个变体来一次修改多个列: Mutate_all()/ transmutate_all():将函数应用于数据框中的每个列。...Mutate_at()/ transmutate_at():将函数应用于使用字符向量选择的特定列 Mutate_if()/ transmutate_if():将函数应用于使用返回TRUE的谓词函数选择的列...tbl:一个tbl数据框 funs:由funs()生成的函数调用列表,或函数名称的字符向量,或简称为函数。predicate:要应用于列或逻辑向量的谓词函数。

    4.2K20

    【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

    1.1 缺失值处理 数据中的缺失值常常会影响模型的准确性,必须在预处理阶段处理。Pandas 提供了丰富的缺失值处理方法: 删除缺失值:可以删除包含缺失值的行或列。...填充缺失值:可以使用均值、中位数、最常见值或自定义值填充缺失值。...import pandas as pd # 创建一个包含缺失值的数据框 data = {'Name': ['Alice', 'Bob', 'Charlie', None], 'Age'...中位数填充:适合存在极端值的数值特征。 众数填充:常用于分类特征。 1.2 数据标准化与归一化 在某些机器学习算法(如线性回归、KNN 等)中,数据的尺度差异会对模型表现产生影响。...常用的编码方法有: Label Encoding:将分类值转换为数字。 One-Hot Encoding:为每个分类值创建一个新的列。

    23910

    干货:用Python进行数据清洗,这7种方法你一定要掌握

    在下图中展示了中位数填补缺失值和缺失值指示变量的生成过程。 ?...以指定值填补 pandas数据框提供了fillna方法完成对缺失值的填补,例如对sample表的列score填补缺失值,填补方法为均值: >sample.score.fillna(sample.score.mean...缺失值指示变量 pandas数据框对象可以直接调用方法isnull产生缺失值指示变量,例如产生score变量的缺失值指示变量: >sample.score.isnull() 0 False 1...如下所示,参数x表示一个pd.Series列,quantile指盖帽的范围区间,默认凡小于百分之1分位数和大于百分之99分位数的值将会被百分之1分位数和百分之99分位数替代: >def cap(x,quantile...▲图5-11:未处理噪声时的变量直方图 对pandas数据框所有列进行盖帽法转换,可以以如下写法,从直方图对比可以看出盖帽后极端值频数的变化。

    10.7K62

    浅谈pandas,pyspark 的大数据ETL实践经验

    2.3 pyspark dataframe 新增一列并赋值 http://spark.apache.org/docs/latest/api/python/pyspark.sql.html?...缺失值的处理 pandas pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...DataFrame使用isnull方法在输出空值的时候全为NaN 例如对于样本数据中的年龄字段,替换缺失值,并进行离群值清洗 pdf["AGE"] = pd.to_numeric(pdf["AGE"],...每一列缺失值百分比 import pyspark.sql.functions as fn queshi_sdf = application_sdf.agg(*[(1-(fn.count(c) /fn.count...比如,有时候我们使用数据进行用户年龄的计算,有的给出的是出生日期,有的给出的年龄计算单位是周、天,我们为了模型计算方便需要统一进行数据的单位统一,以下给出一个统一根据出生日期计算年龄的函数样例。

    5.5K30

    干货:4个小技巧助你搞定缺失、混乱的数据(附实例代码)

    收集工具坏了,调查问卷上某些问题人们不想回答,或者文件被损坏了;这些还只是数据集可能不全的一小部分原因。如果想使用这个数据集,我们有两个选择:忽略缺失的数据,或者用一些值替代。 1....更多 插补数据不是填补缺失值的唯一方法。数据对称分布且没有异常值时,才会返回一个合理的值;如果分布比较偏,平均值是有偏差的。衡量集中趋势更好的维度是中位数。...更多 有时候我们不会用均匀间隔的值,我们会让每个桶中拥有相同的数目。要达成这个目标,我们可以使用分位数。 分位数与百分位数有紧密的联系。...区别在于百分位数返回的是给定百分数的值,而分位数返回的是给定分位点的值。...所以,.quantile(...)方法会以price_mean列的最小值开始,直到最大值,返回十分位数的列表。 04 编码分类变量 为数据的探索阶段准备的最后一步就是分类变量了。

    1.5K30

    【R语言经典实例3】计算基本统计量

    对于R软件返回的结果你应该慎重地考虑:数据中的缺失值是否会严重影响统计结果?...如果是,那么R软件返回错误结果是正确的;如果不是,则可以通过设置参数na.rm=TRUE, 告知R软件忽略缺失值: > x <- c(0,1,1,2,3,NA) > mean(x, na.rm=TRUE...) [1] 1.4 > sd(x, na.rm=TRUE) [1] 1.140175 mean函数和sd函数能巧妙地处理数据框数据,自动将数据框中的每一列认为是不同的变量,并对每列数据分别进行计算。...下面的例子展示了mean和sd函数对有三列的数据框的计算结果: > print(dframe) small mediumbig 1 0.6739635 10.526448...每个数值对应着对数据框中一列数据的计算结果(一般地,R软件会以一个包含三个元素的向量返回结果,其中每个元素的names属性由数据框中各个列的名称得来)。

    2.1K20

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...# 2.用均值替换缺失值 import math from pyspark.sql import functions as func # 导入spark内置函数 # 计算缺失值,collect()函数将数据返回到...() # 4.填充缺失值 # 对所有列用同一个值填充缺失值 df1.na.fill('unknown').show() # 5.不同的列用不同的值填充 df1.na.fill({'LastName'...']) 12、 生成新列 # 数据转换,可以理解成列与列的运算 # 注意自定义函数的调用方式 # 0.创建udf自定义函数,对于简单的lambda函数不需要指定返回值类型 from pyspark.sql.functions

    10.5K10

    Spark Extracting,transforming,selecting features

    ,通过除以每个特征自身的最大绝对值将数值范围缩放到-1和1之间,这个操作不会移动或者集中数据(数据分布没变),也就不会损失任何稀疏性; MaxAbsScaler计算总结统计生成MaxAbsScalerModel...)将数值型特征转换为类别型特征(类别号为分位数对应),通过numBuckets设置桶的数量,也就是分为多少段,比如设置为100,那就是百分位,可能最终桶数小于这个设置的值,这是因为原数据中的所有可能的数值数量不足导致的...relativeError控制,如果设置为0,那么就会计算准确的分位数(注意这个计算是非常占用计算资源的),桶的上下限为正负无穷,覆盖所有实数; 假设我们有下列DataFrame: id hour 0...hour", outputCol="result") result = discretizer.fit(df).transform(df) result.show() Imputer Imputer用于对数据集中的缺失值进行填充...,可以通过均值或者中位数等对指定未知的缺失值填充,输入特征需要是Float或者Double类型,当前Imputer不支持类别特征和对于包含类别特征的列可能会出现错误数值; 注意:所有输入特征中的null

    21.9K41

    缺失值处理,你真的会了吗?

    结果图中绿色框是数据总索引数,蓝色框为每个变量的总记录数,它们的差值为每个变量的缺失值总数。 代码: >>> data.describe() 输出结果: ?...>>> miss_analy.head(10) miss_analy 存储的是每个变量缺失情况的数据框。...n : int, default 0过滤后的数据格式中包含的最大列数。 P : int, default 0过滤后的数据框中列的最大填充百分比。...条形图有异曲同工之秒:封装的库,使用更加方便,既能看出缺失值数量,又能看出缺失值对百分比。...真值转化法 认为缺失值本身以一种数据分布规律存在。将变量的实际值和缺失值都作为输入维度参与后续数据处理和模型计算中。 不处理 对于一些模型对缺失值有容忍度或灵活处理方法,可不处理缺失值。

    1.6K30

    机器学习基础:缺失值的处理技巧(附Python代码)

    ,即变量的含义、获取方式、计算逻辑,以便知道该变量为什么会出现缺失值、缺失值代表什么含义。...采用某种插入模式进行填充,比如取缺失值前后值的均值进行填充: # interpolate()插值法,缺失值前后数值的均值,但是若缺失值前后也存在缺失,则不进行计算插补。...(不包括目标列) # params: y_train 为不含缺失值的目标列 # params: test 为目标列为缺失值的数据(不包括目标列) if dispersed:...(不包括目标列) # params: y_train 为不含缺失值的目标列 # params: test 为目标列为缺失值的数据(不包括目标列) if dispersed:...4、总结 总之,处理缺失值是需要研究数据规律与缺失情况来进行处理的,复杂的算法不一定有好的效果,因此,还要具体问题具体分析,尤其是要搞明白字段含义以及缺失意义,这往往容易被忽略。

    2.4K22

    R in action读书笔记(6)-第七章:基本统计分析(中)

    xtabs(formula, data) 根据一个公式和一个矩阵或数据框创建一个 N 维列联表 prop.table(table, margins) 依margins...除此之外,xtabs()函数还可使用公式风格的输入创建列联表, 格式为:mytable<-xtabs(~A+B,data=mydata) 其中的mydata是一个矩阵或数据框。...0.6744186 0.1627907 0.1627907 1.0000000 Treated 0.3170732 0.1707317 0.5121951 1.0000000 注意 table()函数默认忽略缺失值...) CrossTable()函数有很多选项,可以做许多事情:计算(行、列、单元格)的百分比;指 定小数位数;进行卡方、Fisher和McNemar独立性检验;计算期望和(皮尔逊、标准化、调整的 标准化)...残差;将缺失值作为一种有效值;进行行和列标题的标注;生成SAS或SPSS风格的输出。

    1.6K20

    【学习】SPSS探索分析实践操作

    SPSS为我们提供了探索分析,所谓探索分析之所以是探索,是因为有时候我们对于变量的分布特点不是很清楚,探索的目的在于帮助我们完成以下的工作:识别数据:例如数据的分布形式、异常值、缺失值;...界外值:输出变量数据的前5个最大值和后5个最小值。 百分位数:变量数据的百分位数。 这里我们只选择描述性就可以了。接下来就是绘制对话框的设置了。 ?...下面就是选项对话框的设置了,该部分主要是针对缺失值的处理,方法有三种: 按列表排除个案:只要任何一个变量含有缺失值,就要踢出所有因变量或分组变量中有缺失值的观测记录。...按对排除个案:仅仅踢出所用到的变量的缺失值。 报告值:变量中存在缺失值单独作为一个类别进行统计,输出。 ?...这里简单的再说一句,矩形框的部分是箱线图的主体,上中下三线代表75%,50%,25%的百分位数。 纵向的直线叫做触须线,上截止到变量本体的最大值,下截止到变量本体的最小值。

    1.6K80

    机器学习基础:缺失值的处理技巧(附Python代码)

    ,即变量的含义、获取方式、计算逻辑,以便知道该变量为什么会出现缺失值、缺失值代表什么含义。...采用某种插入模式进行填充,比如取缺失值前后值的均值进行填充: # interpolate()插值法,缺失值前后数值的均值,但是若缺失值前后也存在缺失,则不进行计算插补。...(不包括目标列) # params: y_train 为不含缺失值的目标列 # params: test 为目标列为缺失值的数据(不包括目标列) if dispersed:...(不包括目标列) # params: y_train 为不含缺失值的目标列 # params: test 为目标列为缺失值的数据(不包括目标列) if dispersed:...4、总结 总之,处理缺失值是需要研究数据规律与缺失情况来进行处理的,复杂的算法不一定有好的效果,因此,还要具体问题具体分析,尤其是要搞明白字段含义以及缺失意义,这往往容易被忽略。

    2.5K30

    机器学习基础:缺失值的处理技巧(附Python代码)

    ,即变量的含义、获取方式、计算逻辑,以便知道该变量为什么会出现缺失值、缺失值代表什么含义。...采用某种插入模式进行填充,比如取缺失值前后值的均值进行填充: # interpolate()插值法,缺失值前后数值的均值,但是若缺失值前后也存在缺失,则不进行计算插补。...(不包括目标列) # params: y_train 为不含缺失值的目标列 # params: test 为目标列为缺失值的数据(不包括目标列) if dispersed:...(不包括目标列) # params: y_train 为不含缺失值的目标列 # params: test 为目标列为缺失值的数据(不包括目标列) if dispersed:...4、总结 总之,处理缺失值是需要研究数据规律与缺失情况来进行处理的,复杂的算法不一定有好的效果,因此,还要具体问题具体分析,尤其是要搞明白字段含义以及缺失意义,这往往容易被忽略。

    1.2K20
    领券