首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

怎么数不清。pandas dataframe中相同字符串的

数量?

在pandas中,我们可以使用value_counts()函数来统计DataFrame中相同字符串的数量。value_counts()函数会返回一个Series对象,其中包含每个唯一字符串值及其对应的计数。

下面是一个示例代码:

代码语言:python
代码运行次数:0
复制
import pandas as pd

# 创建一个包含字符串的DataFrame
data = {'col1': ['apple', 'banana', 'apple', 'orange', 'banana']}
df = pd.DataFrame(data)

# 使用value_counts()函数统计相同字符串的数量
counts = df['col1'].value_counts()

print(counts)

输出结果为:

代码语言:txt
复制
apple     2
banana    2
orange    1
Name: col1, dtype: int64

这表示在col1列中,字符串"apple"和"banana"各出现了2次,字符串"orange"出现了1次。

对于pandas DataFrame中的其他数据类型(如数字、日期等),也可以使用类似的方法进行统计。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

(六)Python:Pandas中的DataFrame

DataFrame也能自动生成行索引,索引从0开始,代码如下所示: import pandas as pd data = {'name': ['aaaaaa', 'bbbbbb', 'cccccc']...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...: 5000, 'tax': 0.05} print(aDF) print("===============================") aDF['tax'] = 0.03 # 将一列修改为相同的值...5000  0.05 3   xiaolan  6000  0.10 5     Liuxi  5000  0.05 =============================== 将一列修改为相同的值...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

3.8K20
  • pandas | DataFrame中的排序与汇总方法

    今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...在上一篇文章当中我们主要介绍了DataFrame当中的apply方法,如何在一个DataFrame对每一行或者是每一列进行广播运算,使得我们可以在很短的时间内处理整份数据。...排序 排序是我们一个非常基本的需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中的排序方法。...Series当中的排序方法有两个,一个是sort_index,顾名思义根据Series中的索引对这些值进行排序。另一个是sort_values,根据Series中的值来排序。...排名 有的时候我们希望得到元素的排名,我们会希望知道当前元素在整体当中排第几,pandas当中也提供了这个功能,它就是rank方法。 ?

    4.7K50

    pandas | DataFrame中的排序与汇总方法

    大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说pandas | DataFrame中的排序与汇总方法,希望能够帮助大家进步!!!...今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...排序 排序是我们一个非常基本的需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中的排序方法。...Series当中的排序方法有两个,一个是sort_index,顾名思义根据Series中的索引对这些值进行排序。另一个是sort_values,根据Series中的值来排序。...排名 有的时候我们希望得到元素的排名,我们会希望知道当前元素在整体当中排第几,pandas当中也提供了这个功能,它就是rank方法。

    3.9K20

    Pandas DataFrame 中的自连接和交叉连接

    有很多种不同种类的 JOINS操作,并且pandas 也提供了这些方式的实现来轻松组合 Series 或 DataFrame。...自连接 顾名思义,自连接是将 DataFrame 连接到自己的连接。也就是说连接的左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 中的行。...df_manager2 的输出与 df_manager 相同。 交叉连接 交叉连接也是一种连接类型,可以生成两个或多个表中行的笛卡尔积。它将第一个表中的行与第二个表中的每一行组合在一起。...也可以使用 pandas.concat () 函数,与 pandas.merge () 函数相同的结果。...总结 在本文中,介绍了如何在Pandas中使用连接的操作,以及它们是如何在 Pandas DataFrame 中执行的。这是一篇非常简单的入门文章,希望在你处理数据的时候有所帮助。

    4.3K20

    pandas | 详解DataFrame中的apply与applymap方法

    今天是pandas数据处理专题的第5篇文章,我们来聊聊pandas的一些高级运算。...今天这篇文章我们来聊聊dataframe中的广播机制,以及apply函数的使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy的专题文章当中曾经介绍过广播。...我们可以将DataFrame作为numpy函数的参数传入,但如果我们想要自己定义一个方法并且应用在DataFrame上怎么办?...最后我们来介绍一下applymap,它是元素级的map,我们可以用它来操作DataFrame中的每一个元素。比如我们可以用它来转换DataFrame当中数据的格式。 ?...总结 今天的文章我们主要介绍了pandas当中apply与applymap的使用方法, 这两个方法在我们日常操作DataFrame的数据非常常用,可以说是手术刀级的api。

    3K20

    python下的Pandas中DataFrame基本操作(二),DataFrame、dict、array构造简析

    DataFrame简介:   DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...跟其他类似的数据结构相比(如R的data.frame),DataFrame中面向行和面向列的操作基本上是平衡的。...其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...7 3 4 8 第二种:将包含不同子列表的列表转换为数据框 from pandas.core.frame import DataFrame a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表...参考资料:《利用Python进行数据分析》 在一个空的dataframe中插入数据 def test(): LIST=[1,2,3,4] empty = pd.DataFrame(columns

    4.5K30

    【已解决】怎么获取字符串中相同字符串第N 个所在的位置

    问题描述 给一个配置的字符串例如 NSString *string = @"34563879-+4561346573"; 现在我想获取到字符串第3个字符串3所在的位置。...NSStringCompareOptions)mask range:(NSRange)rangeOfReceiverToSearch searchString 这个参数是我们需要查找的字符串...NSAnchoredSearch = 8, //搜索限制范围的字符串 NSNumericSearch = 64, //按照字符串里的数字为依据,算出顺序。...NSWidthInsensitiveSearchNS_ENUM_AVAILABLE(10_5, 2_0) = 256,//忽略字符串的长度,比较出结果 NSForcedOrderingSearchNS_ENUM_AVAILABLE...使用通用兼容的比较方法,如果设置此项,可以去掉 NSCaseInsensitiveSearch 和 NSAnchoredSearch }; rangeOfReceiverToSearch 需要搜索在源字符串所在的范围

    2.5K20

    python下的Pandas中DataFrame基本操作(一),基本函数整理

    pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程中,我发现书中的内容还只是冰山一角...谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。...DataFrame.isin(values) 是否包含数据框中的元素 DataFrame.where(cond[, other, inplace, …]) 条件筛选 DataFrame.mask(cond...denoting duplicate rows, optionally only DataFrame.equals(other) 两个数据框是否相同 DataFrame.filter([items,...参考文献: http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

    11.1K80

    pandas中的字符串处理函数

    在pandas中,通过DataFrame来存储文件中的内容,其中最常见的数据类型就是字符串了。针对字符串,pandas提供了一系列的函数,来提高操作效率。...这些函数可以方便的操作字符串类型的Series对象,对数据框中的某一列进行操作,这种向量化的操作提高了处理效率。pandas中的字符串处理函数以str开头,常用的有以下几种 1....去除空白 和内置的strip系列函数相同,pandas也提供了一系列的去除空白函数,用法如下 >>> df = pd.DataFrame([' A', ' B', 'C ', 'D ']) >>> df...拼接 通过str.cat函数来实现,用法如下 >>> import pandas as pd >>> df = pd.DataFrame(['A', 'B', 'C', 'D']) >>> df...,完整的字符串处理函数请查看官方的API文档。

    2.8K30

    js替换html中的字符串,js怎么替换字符串?

    大家好,又见面了,我是你们的朋友全栈君。 在js中,可以使用str.replace()方法来替换字符串。...它将在 stringObject 中查找与 regexp 相匹配的子字符串,然后用 replacement 来替换这些子串。...如果它是字符串,那么每个匹配都将由字符串替换。但是 replacement 中的 $ 字符具有特定的含义。如下表所示,它说明从模式匹配得到的字符串将用于替换。...在正则中,当我们需要匹配两个或多个连续的相同的字符的时候,就需要用到反向引用了,查找连续重复的字符是反向引用最简单却也是最有用的应用之一。...—-“ab” 2、第一个分组匹配到的字符串,第二个分组所匹配到的字符串….依次类推一直 到最后一个分组—-“a,b” 3、此次匹配在源字符串中的下标,返回的是第一个匹配到的字符的下标—-2 4、源字符串

    23.5K20
    领券