继Apple发布CoreML之后,Google发布了TensorFlow Lite的开发者预览版,这是TensorFlow Mobile的后续发展版本。...通过在支持它的设备上利用硬件加速,TensorFlow Lite可以提供更好的性能。它也具有较少的依赖,从而比其前身有更小的尺寸。...初识 显然从谷歌的TensorFlow Lite文档入手最好,这些文档主要在github上(https://github.com/tensorflow/tensorflow/tree/master/tensorflow...如果我有一个训练的模型,想将其转换为.tflite文件,该怎么做?有一些简略提示我该怎么做,我按图索骥,无奈有一些进入了死胡同。...从一个简单的模型开始 首先,我想选择一个未经过预先训练或转换成.tflite文件的TensorFlow模型,理所当然我选择使用MNIST数据训练的简单的神经网络(目前支持3种TFLite模型:MobileNet
如果出错了还请读者指出,本文仅从TensorFlow Lite的文档出发结合我的思考,不做过多深入的代码层面分析。...本文大致目录结构如下: 什么是委托代理及其优点; 如何添加一个代理; Android 如何使用 C++ API 使用 GPU 代理; TensorFlow LIte 的 GPU 代理; 当前GPU支持的模型和算子...[图1 原始模型Graph] 图:原始模型Graph 不过从我对文档的理解来看,感觉更像是添加的一种硬件后端(代理我想应该只是调用调用层面,不是底层实现,另外在Hexagon DSP的委托代理部分,文档坦言说...TensorFlow LIte 的 GPU 代理 [图3 TensorFlow Lite的Demo展示安卓 GPU 推理] 图 TensorFlow Lite的Demo展示安卓 GPU 推理 没说安卓的其他设备...本文对委托代理(Delegate)做一定的解释,因为仅从TensorFlow Lite的文档出发结合我的思考,并介绍了委托代理在TensorFlow Lite中的实现方式,对TensorFlow Lite
一般而言,我们通常从那几个指标去分析这个模型? 看系数,比如第一产值每增长1亿元,人均GDP平均增长a元。 看P值,比如系数a的P值为0.025,说明第一产业产值对人均GDP的增长作用是显著的。...看R2,比如 R2=0.95,说明这几个产业的产值,对人均GDP的解释能力为95%。 我们常用的分析指标差不多是这些,其他 t值、F值、DW值等都是对模型本身的各种检验,对于业务分析没有太多帮助。...本文介绍一个指标,从另一个角度进行分析:各自变量对因变量的贡献率。 一、贡献率的计算 仍以上面回归模型为例,这个贡献率就是 各产业值 对 人均GDP 的 贡献率。...我们用 stepwise 跑出线性回归模型: ? 图1 回归模型结果(1) ? 图2 回归模型结果(2) 我们主要关注最终被stepwise确定的模型,也就是表中的 model 4。...一般来说,我们分析的指标差不多是这些,现在我们来计算一下贡献率: (1)delta R2 法 每个因子引入之后,R2的变化如下: ?
评估指标的一个重要方面是它们区分模型结果的能力。 我见过很多分析师和数据科学家不费心检查他们的模型的鲁棒性。一旦他们完成了模型的构建,他们就会匆忙地将其应用到不可见的数据上。这是一种错误的方法。...在我们的行业中,我们考虑不同种类的指标来评估我们的模型。指标的选择完全取决于模型的类型和模型的实现计划。 在你构建完模型之后,这11个指标将帮助你评估模型的准确性。...在回归问题中,我们的输出没有这样的不一致性。输出在本质上总是连续的,不需要进一步处理。 例证 分类模型评估指标的讨论中,我使用了我在Kaggle上的BCI挑战的预测。...很久以前,我参加了Kaggle的TFI比赛。我想向你展示我的公共和私人排行榜得分之间的差异。 以下是Kaggle得分的一个例子! ? 你会注意到,公共分数最差的第三个条目变成了私人排名的最佳模型。...上述方法会有消极的一面吗? 这种方法的一个消极方面训练模型中丢失了大量数据。因此,该模型具有很高的偏差。这不会给出系数的最佳估计。那么下一个最佳选择是什么?
原文链接: blog.csdn.net/liweibin1994/article/details/79462554 编辑:zglg AUC在机器学习领域中是一种模型评估指标。...而ROC的计算又需要借助混淆矩阵,因此,我们先从混淆矩阵开始谈起。 混淆矩阵 假设,我们有一个任务:给定一些患者的样本,构建一个模型来预测肿瘤是不是恶性的。...我们先来考察几个特殊的点。 点(0,1),即FPR=0,TPR=1。FPR=0说明FP=0,也就是说,没有假正例。TPR=1说明,FN=0,也就是说没有假反例。这不就是最完美的情况吗?...也就是说,无论给什么样本给我,我都无脑预测成恶性肿瘤就是了。 点(1,1),即FPR=1,TPR=1。显然,这个点跟点(0,0)是相反的,这个点的意义是将所有的样本都预测为良性肿瘤。...2 如果在给定的样本中,我都随机预测,也就是0.5概率预测为良性肿瘤,0.5概率预测为恶性肿瘤。那么这条曲线会是怎样的呢?可以想象,如果数据是均匀,那么这条曲线就是y=x。
作者:Webbley 编辑:zglg 来自:Python与算法社区 blog.csdn.net/liweibin1994/article/details/79462554 AUC在机器学习领域中是一种模型评估指标...而ROC的计算又需要借助混淆矩阵,因此,我们先从混淆矩阵开始谈起。 混淆矩阵 假设,我们有一个任务:给定一些患者的样本,构建一个模型来预测肿瘤是不是恶性的。...我们先来考察几个特殊的点。 点(0,1),即FPR=0,TPR=1。FPR=0说明FP=0,也就是说,没有假正例。TPR=1说明,FN=0,也就是说没有假反例。这不就是最完美的情况吗?...也就是说,无论给什么样本给我,我都无脑预测成恶性肿瘤就是了。 点(1,1),即FPR=1,TPR=1。显然,这个点跟点(0,0)是相反的,这个点的意义是将所有的样本都预测为良性肿瘤。...2 如果在给定的样本中,我都随机预测,也就是0.5概率预测为良性肿瘤,0.5概率预测为恶性肿瘤。那么这条曲线会是怎样的呢?可以想象,如果数据是均匀,那么这条曲线就是y=x。
使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...在本文中,我将使用Fashion MNIST来进行说明。然而,这并不是本文的唯一目标,因为这可以通过在训练结束时简单地在验证集上绘制混淆矩阵来实现。...自tensorflow 2.2以来,添加了新的模型方法train_step和test_step,将这些定制度量集成到训练和验证中变得非常容易。...相反,错误标记为shirts的情况主要发生在t-shirts上。 这种类型的错误是合理的,我将在另一篇文章中讨论在这种情况下如何改进培训。...最后做一个总结:我们只用了一些简单的代码就使用Keras无缝地为深度神经网络训练添加复杂的指标,通过这些代码能够帮助我们在训练的时候更高效的工作。
今天我又点击了升级,粗略看了一下新版本4.1的特性说明,其中有一项是:使用TensorFlow Lite模型。出于对机器学习的兴趣,于是就研究了一番这个新特性。...TensorFlow Lite是最受欢迎的编写移动端机器学习模型的开发库,在我之前的文章中也写过如何在Android程序中使用TFLite模型。...如果你希望得到包含元数据的模型,一种方法是前往TensorFlow Hub下载模型,一种方法是自行为tflite模型添加元数据。...这里有一篇指导说明如何为TFLite模型添加元数据: https://tensorflow.google.cn/lite/convert/metadata 目前进支持图片分类和风格迁移类的模型,当然随着开发进程...目前看来,这项新特性还完成的比较粗糙,但也可以看出谷歌的目标,将机器学习扩展到终端,让机器学习应用程序开发越来越简单。你觉得Android Studio的这项新特性有用吗?欢迎交流!
然而多年的开发经验告诉我,真正自己做起来,一定会碰到问题,特别是像tensorflow lite这种频繁迭代的产品。果然,我就一头栽进了tensorflow lite 的巨坑里。...我开始采用的是Google Inception V3模型,换成教程中使用的mobilenet模型,问题依旧。...将我训练出来的mobilenet模型放到TensorFlow for Poets 2: Android的示例代码中,工作正常,虽然准确率不高,但至少top 1的概率大于0.4。可以确认模型没有问题。...这时,我算是明白,我真的跌进tensorflow lite的巨坑里面了。...Tensorflow Lite出现这样一个问题也真是匪夷所思,同样的输入和同样的处理,输出结果却不同,真的颠覆了我对编程的理解。 ? 当年爱因斯坦面对量子力学,提出了“上帝是在执骰子吗?”的疑问。
边缘计算时代离我们越来越近,当前嵌入式设备的智能框架还是 TensorFlow Lite比较成熟,这里我准备用一系列免费课程和大家一起讨论下 TensorFlow Lite在移动设备上的应用,让我们的设备智能起来...,当然,TensorFlow Lite上也可以部署用自己的数据集定制化训练的模型。...TensorFlow Lite 模型 TensorFlow Lite 所用的模型是使用 TOCO 工具从 TensorFlow 模型转化而来的,来源就是经过冷冻生成的 Frozen Graph。...在 TensorFlow Lite 中兼容的模型是 Inception v3 和 MobileNets,Inception v3 主要用于验证 ImageNet 数据集,这是一个被学界广泛认定为图片验证指标的数据集...现在我们对 TensorFlow Lite 的概念和模型转化有了认识,接下来讲述 TensorFlow Lite 模型文件格式,并可视化以帮助大家记忆理解,也包含 TensorFlow Lite 的具体加载运行过程
当有人经过闸机时,可以在0.1-0.3秒内完成人脸实时跟踪,并在0.2秒内完成高安全性的静默活体检测及人脸比对,如此高效的响应速度,你知道是怎么做到的吗?...该工作使得Tensorflow模型转换时,一个Tensorflow Conv 对应一个Paddle Conv, 而非Padding+Conv 两个OP,从而可以提升Tensorflow模型的推理性能。...Tensorflow公开模型,比如MnasNet、 MobileNetV1和ResNet101,Paddle Lite与MNN推理框架在推理时延性能指标上进行对比,结果如图6所示。 ?...图6 Tensorflow框架模型的推理时延对比 由图6可知,Paddle Lite性能整体优于MNN框架。...03 简化模型优化工具操作流程,支持一键操作,用户上手更容易 对于第三方来源(Tensorflow、Caffe、ONNX)模型,一般需要经过两次转化才能获得Paddle Lite的优化模型。
点击上方↑↑↑“OpenCV学堂”关注我 来源:公众号 量子位 授权转载 近日,TensorFlow模型优化工具包又添一员大将,训练后的半精度浮点量化(float16 quantization)工具。...体积压缩了,精确度难道不会损失吗? 降低浮点数精度,当然会带来精确度的损失,但是不必担心,这样的损失小到可以忽略不计。...在TensorFlow Lite converter上把32位模型的优化设置设为DEFAULT,然后把目标规范支持类型设置为FLOAT16: import tensorflow as tf converter...TensorFlow Lite的GPU代理已经得到加强,能够直接获取并运行16位精度参数: //Prepare GPU delegate. const TfLiteGpuDelegateOptions.../github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb
在本次演讲上,Google的工程师通过示例展示了从机器学习模型训练到部署到移动终端的完整流程,并给出了三种可选方法: MLKit TensorFlow Lite TensorFow js 后面还演示了微控制器上的机器学习...Swift for TensorFlow 我没接触过IOS上的编程,这部视频我没看,从官方网站上找到的资料。...适用于移动和物联网设备的AI:TensorFlow Lite 在前面的演讲终端设备上进行机器学习中有谈到TensorFlow Lite,这个演讲则专门围绕TensorFlow Lite而展开,从中你可以了解到...TensorFlow Lite的优点,TensorFlow Lite项目的开发和部署流程,以及TensorFlow团队在优化、增加更多Ops等等方面的努力。...该框架包括实现流行的TLR技术,如成对pairwise或列表listwise损失函数、多项目评分、排名指标优化和无偏学习排名。
下面给大家分享我是如何开始在Android上构建自己的定制机器学习模型的。 移动应用市场正在快速发展。前任苹果CEO乔布斯说出“万物皆有应用”这句话时,人们并没有把它当回事。...然而,从移动应用的消费方式来看,你不仅有一个适用于所有东西的应用,你的应用往往还会跟随最新的趋势发展。 还记得钢铁侠的助手贾维斯吗?...更重要的是,你甚至不需要成为Tensorflow Lite或机器学习领域的专家,就可以把它们运用到你开发的Android或iOS应用程序中。...如何使用TensorFlow Lite 要使用TensorFlow lite定制Android应用程序解决方案,您需要遵循以下几个步骤。...您可以将模型转换为可以使用这些代码连接的图像。 步骤4 这一步是使用tflite_convert命令将模型转换为TensorFlow lite。
,提供多种多样的预训练模型,协助解决各类型应用的机器学习问题。...知衣科技使用 TensorFlow 来训练他们的模型以构建 3D 试衣功能,用户可以便捷地按图片来搜索风格类似的衣服。...TensorFlow.js 已支持 TensorFlow Lite 模型,无需环境设置一键启动,帮助开发者更高效、便捷地在 web 环境中进行开发。...利用 TensorFlow Lite 可以构建具备机器学习功能的原生移动应用,轻松覆盖 Android 和 iOS 平台上的数十亿用户。...与一年前相比,达到关键网页指标门槛的 Chrome 网页浏览量增加了 20%。
性能测量 本节显示了包含的MobileNet模型性能的几个指标。影响性能的因素有两个: “深度倍增器”。这个超参数可以让您平衡模型大小,推理速度和准确性之间的权衡。...将MobileNet V2加入您的应用程序会为您的应用程序包增加大约7 MB的空间。 为什么不选择Core ML或TensorFlow Lite? Core ML很棒,我是粉丝。...如果您使用Keras,Caffe或MXNet训练模型,将模型转换为Core ML文件并将其嵌入您的应用程序非常容易。如果您使用TensorFlow训练模型,TF Lite是一个不错的选择。...使用此库,您可以获得MobileNet V1和V2 的完整Swift源代码,以及SSD,SSDLite和DeepLabv3 +。...或者,如果Core ML或TensorFlow不是合适的解决方案,我可以将您的模型转换为使用高度优化的CPU例程,以尽可能地挤出最大速度。
对于Tensorflow最大需求是能够在桌面系统中训练并运行模型,这种需求影响了很多设计决策,例如为了更低的延迟和更多的功能而增加可执行文件的大小。...Google在2017年启动了TensorFlow Lite,目标是在移动设备上高效且轻松的运行神经网络模型。为了减少框架的大小和复杂性,TFLite 删除了不常用的功能。...Interpreter TF-Lite使用“解释执行模型”(术语来自TinyML书,有机会展开描述,很有意思的实现),与之相对的是“模型生成代码”(code generation)。...[teacher_student.png] 3.深入:浅述Tensorflow Lite for Microcontrollers 主要内容摘自《TinyML》一书的第13章”TensorFlow Lite...3)不需要浮点硬件 没话说,便宜的mcu说硬件浮点要贵2块钱,再买一个不香吗?
鱼羊 发自 凹非寺 量子位 报道 | 公众号 QbitAI 近日,TensorFlow模型优化工具包又添一员大将,训练后的半精度浮点量化(float16 quantization)工具。 ?...体积压缩了,精确度难道不会损失吗? 降低浮点数精度,当然会带来精确度的损失,但是不必担心,这样的损失小到可以忽略不计。...在TensorFlow Lite converter上把32位模型的优化设置设为DEFAULT,然后把目标规范支持类型设置为FLOAT16: import tensorflow as tf converter...TensorFlow Lite的GPU代理已经得到加强,能够直接获取并运行16位精度参数: //Prepare GPU delegate. const TfLiteGpuDelegateOptions.../github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb
但是我觉得 Keras 包应该是自己独立的呀? 我在训练自己的网络时,会纠结于该使用哪个「Keras」。 其次,有必要升级到 TensorFlow 2.0 吗?...我在深度学习博客中看到了一些有关 TensorFlow 2.0 的教程,但是对于刚刚提到的那些困惑,我不知道该从何处着手去解决。你能给我一些启示吗?...图 7:TensorFlow 2.0 生态系统中有什么新特性吗?我应该用 Keras 还是 tf.keras?...我们可以使用 TensorFlow Lite (TF Lite) 来训练、优化和量化那些专门为资源受限的设备(如智能手机和 Raspberry Pi, Google Coral 等其他嵌入式设备)设计的模型...你不仅能够使用 TensorFlow 2.0 和 tf.keras 来训练自己的模型,还可以: 使用 TensorFlow Lite (TF Lite) 将这些模型部署到移动/嵌入式环境中; 使用 TensorFlow
领取专属 10元无门槛券
手把手带您无忧上云