首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

我如何才能使这个周期性指标收集代码更具功能性(更少的可变状态)?

要使周期性指标收集代码更具功能性(更少的可变状态),可以采取以下几个步骤:

  1. 使用函数式编程:函数式编程强调无副作用和不可变性,可以减少可变状态的使用。使用纯函数来处理周期性指标的收集,确保函数的输入和输出完全确定,不依赖于外部状态。
  2. 使用适当的数据结构:选择适合存储周期性指标的数据结构,例如数组、链表或树等。根据具体需求和数据特点,选择最合适的数据结构来存储和操作周期性指标数据。
  3. 封装数据操作:将周期性指标的数据操作封装成独立的函数或类,提供统一的接口来进行数据的收集、处理和查询。通过封装,可以降低代码的复杂度,减少可变状态的使用。
  4. 使用设计模式:应用适当的设计模式来组织和管理周期性指标的收集代码。例如,可以使用观察者模式来实现数据的订阅和通知,或者使用迭代器模式来遍历和处理周期性指标数据。
  5. 引入缓存机制:对于周期性指标的收集,可以引入缓存机制来提高性能和减少对可变状态的依赖。通过缓存最近的指标数据,可以避免频繁的数据收集和计算,提高代码的功能性和效率。
  6. 使用合适的编程语言特性:选择适合处理周期性指标的编程语言,并充分利用其特性来简化代码。例如,使用函数式编程语言可以更容易地实现无副作用的数据处理,使用静态类型语言可以提供更强的类型检查和代码可靠性。

总结起来,通过采用函数式编程、适当的数据结构、封装数据操作、设计模式、缓存机制和合适的编程语言特性,可以使周期性指标收集代码更具功能性,减少可变状态的使用。具体实现方式可以根据具体需求和场景进行选择和调整。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

导致系统性能失败的10个原因

很多软件系统由于性能问题导致了失败,在开发生命周期和性能测试生命周期的每个阶段都存在导致性能失败的原因。有时候,性能问题是无法控制的,它不在项目经理、技术架构师或性能工程师的控制范围之内。从业务和个人层面来看,大多数的系统性能失败仅仅是因为性能工程师、开发人员、 DBA、业务团队和利益相关者之间从一开始就缺乏沟通,这导致了许多其他问题,这些问题将直接影响应用程序的性能和 ROI。对任何应用/产品进行有效性能测试的唯一目标是实现令人满意的投资回报。性能测试和软件工程是有风险的,并且总是需要从开发的早期阶段开始,进行大量的反复试验。

03

Flink程序设计之道

软件架构的复杂性通常并不是由功能性需求来决定,而是取决于非功能性需求,例如高性能、高可用、易扩展、易运维、低成本等要求,功能性需求通常是易于实现的,但是为了满足非功能性需求需要去做不同的技术方案选型对比、架构设计等,比喻说为了实现高性能,要去做缓存、分库分表、预计算、异步等方案,这些方案会提高系统的复杂程度。对于Flink程序开发同样会面临这些问题,在设计、实现之初除了需要考虑如何满足功能性需求外,还需要考虑性能、容错等非功能需求。本文将结合自己的实际开发经验从以下几个方面来介绍做一个实时Flink程序设计需要关注的一些问题:

01

fMRI时变功能连接的数据和模型考虑

大脑的功能连接(FC)已被证明在会话中表现出微妙但可靠的调节。估计时变FC的一种方法是使用基于状态的模型,该模型将fMRI时间序列描述为状态的时间序列,每个状态都有一个相关的FC特征模式。然而,从数据对这些模型的估计有时不能以一种有意义的方式捕获变化,这样模型估计将整个会话(或它们的最大部分)分配给单个状态,因此不能有效地捕获会话内的状态调制;我们将这种现象称为模型变得静态或模型停滞。在这里,我们的目标是量化数据的性质和模型参数的选择如何影响模型检测FC时间变化的能力,使用模拟fMRI时间过程和静息状态fMRI数据。我们表明,主体间FC的巨大差异可以压倒会话调制中的细微差异,导致模型成为静态的。此外,分区的选择也会影响模型检测时间变化的能力。我们最后表明,当需要估计的每个状态的自由参数数量很高,而可用于这种估计的观测数据数量较低时,模型往往会变成静态的。基于这些发现,我们针对时变FC研究在预处理、分区和模型复杂性方面提出了一套实用的建议。

01

Nature:可重复的全脑关联研究需要数千人参与

磁共振成像(MRI)已经改变了我们对人类大脑的理解,通过对特定结构的能力(例如,损伤研究)和功能(例如,任务功能MRI (fMRI))的复制映射。心理健康研究和护理还没有从核磁共振成像中实现类似的进步。一个主要的挑战是复制大脑结构或功能的个体间差异与复杂的认知或心理健康表型之间的关联(全脑关联研究(BWAS))。这样的BWAS通常依赖于适合经典脑成像的样本量(中位神经成像研究样本量约为25),但对于捕捉可复制的脑行为表型关联可能太小了。在这里,我们使用了目前最大的三个神经成像数据集,总样本量约为50,000人,以量化BWAS效应大小和可重复性作为样本量的函数。BWAS的关联比之前认为的要小,导致了统计上的研究不足,效应大小和典型样本量的复制失败。随着样本量增加到数千个,复制率开始提高,效应大小信息减少。功能性MRI(对比结构)、认知测试(对比心理健康问卷)和多变量方法(对比单变量)检测到更强的BWAS效应。小于预期的脑表型关联和人群亚样本的变异性可以解释广泛的BWAS复制失败。与影响更大的非BWAS方法(例如,损伤、干预和个人)相比,BWAS的可重复性需要数千个人的样本。

01

人类大脑活动的时空复杂性结构

人类的大脑运作在大范围的功能网络中。这些网络是不同脑区域之间时间相关活动的表现,但全局网络特性和单个脑区神经动力学的关系仍然不完全清楚。本文展示了大脑的网络体系结构与神经正则性的关键时刻紧密相连,这些时刻表现为功能性磁共振成像信号中的自发“复杂性下降”,反应了脑区之间的功能连接强度,促进了神经活动模式的传播,并反映了个体之间的年龄和行为差异。此外,复杂性下降定义了神经活动状态,动态塑造了脑网络的连接强度、拓扑配置和层次结构,并全面解释了脑内已知的结构-功能关系。这些发现描绘了一种原则性的神经活动复杂性体系结构——人类的“复杂组”,它支撑着大脑的功能网络组织。

02

在高速网卡中实现可编程传输协议

摘要:数据中心网络协议栈正在转向硬件,以在低延迟和低CPU利用率的情况下实现100 Gbps甚至更高的数据速率。但是,NIC中络协议栈的硬连线方式扼杀了传输协议的创新。本文通过设计Tonic(一种用于传输逻辑的灵活硬件架构)来实现高速网卡中的可编程传输协议。在100Gbps的速率下,传输协议必须每隔几纳秒在NIC上仅使用每个流状态的几千比特生成一个数据段。通过识别跨不同传输协议的传输逻辑的通用模式,我们为传输逻辑设计了一个高效的硬件“模板”,该模板在使用简单的API编程的同时可以满足这些约束。基于FPGA的原型系统实验表明,Tonic能够支持多种协议的传输逻辑,并能满足100Gbps背靠背128字节数据包的时序要求。也就是说,每隔10 ns,我们的原型就会为下游DMA流水线的一千多个活动流中的一个生成一个数据段的地址,以便获取和传输数据包。

03

PNAS:基于频率标记EEG分离视觉皮层数值和连续幅度提取的数值神经特征

1、研究背景 当涉及到五个以上对象的集合时,我们可以不通过计算而快速得出对象数目的近似值。人类和其他动物物种一样,都有一种对数值数量的直觉。这种近似大量数值的能力背后的认知机制仍然存在诸多争论。研究人员偏向于假设我们拥有一个近似数字系统(ANS),这是一种特定的系统,它从视觉场景中提取数值并建立离散数值尺度的心理表征。然而,一组对象不仅具有数量特征,而且还具有多个连续的视觉特征,包括单个对象的尺寸和集合的范围。这些连续的尺度维度本质上与数值相关(例如,数值越多的集合自然占据更大的区域),并且可以用作获取数值的关键视觉提示。这使得一些作者提出,数字处理没有特定的认知机制,数值要么由一般的尺度机制处理,要么来自连续维度的组合。到目前为止,关于连续尺度对数值处理的贡献还没有达成共识,大量的证据表明,它们既可以促进数值判断,也可以干扰数值判断。当前的研究利用了一种频率标记电生理学方法,将数值从连续的尺度维度中分离出来,并测量两者共同驱动的特定大脑反应。 人类根据数值辨别对象集合的能力被认为与其他动物物种一样,早在语言发展之前很久就存在于婴儿身上。有大量的行为和神经成像证据证明了这种数值能力。例如,最近的实验强调了一种自发的偏向,即当参与者必须从三个点集中选择奇数项或将集合归类为“大”或“小”时,自发地倾向于数值而不是连续的尺度:在这两种情况下,数值都被自发地选为决定标准。此外,一些研究确定了人类和猴子顶叶皮质中特定的调节数值的神经元群体。理论模型假设,这种数值能力背后的机制在于将感觉输入转化为对视觉场景中存在的元素数量的抽象估计。然而,现有的这种机制的经验证据仍然是有问题的,因为连续的尺度变化与数值变化之间存在内在的关联。连续的尺度而不是数值本身可以解释观察到的结果。这是一个悬而未决的问题:认知系统是否能够快速提取必要的数字信息,以建立一个独立于连续尺度变化的表征——如果系统具有这种能力,那么随着数字的处理,协同变化的连续尺度信息会发生什么?ANS理论提出,在归一化阶段中会过滤掉所有连续的尺度,但由于连续尺度会严重影响数值判断,因此没有太多关于该过滤阶段的证据。 另一种理论认为,数值与连续的尺度处理有关。其中,尺度理论(ATOM)用一个独特系统来描述连续尺度和数值之间的关系,该系统能够表示任何类型的离散和连续尺度,包括数值、时间(持续时间)和空间(扩展)。一些作者提出了连续量和离散量的一般尺度概念,其中尺寸知觉在发展和进化上都比数值更为原始,而连续尺度在数值尺度处理的发展中起着关键作用。有大量的经验证据支持数值和连续尺度的公共和独立神经区域。在人类顶叶皮质内发现了用于数值和连续尺度提取的部分重叠的地形图,尽管在这些地形图中不同的神经调节和组织方式暗示了不同的处理机制。根据最近的功能性(fMRI)荟萃分析,在这些重叠区域内,右侧顶叶被确定为广义尺度处理系统的一个可能的解剖学位置。此外,一些作者认为,数值只是一种抽象的认知结构,是对视觉刺激中存在的所有连续尺度特征进行加权的结果,并且数值是通过根据特定情境的需要对低层感官信息进行自适应重组来提取的。这种感觉整合(SI)理论假设所有现有的数值提取证据都可以用处理连续尺度整合的认知控制机制来解释。 理清这些假设和理解数值处理机制的主要挑战是将数值从连续尺度中分离出来。已经为行为任务开发了几种控制连续维度的简洁方法,但是它们控制整个刺激集合中的所有尺度变化,尽管每个刺激仍然包含关于数值和连续维度的信息。事实上,任何视觉刺激都携带有关数值和连续尺度的信息。因此,在严格意义上,这些方法都不能将数值从非数值尺度处理中分离出来。重要的是,这一局限性适用于到目前为止提供的几乎所有支持ANS理论的证据。 当前的研究使用了频率标记方法,该方法包括记录稳态视觉诱发电位(SSVEP),其对应特定于单个给定维度上周期性刺激变化的神经反应。SSVEP已经成功地记录到对数值变化的反应,本研究通过频率标记的实验范式系统地隔离了对数值和连续尺度的区别,该范式不需要明确的任务(因此也不需要决定或判断):视觉刺激遵循的是oddball范式,即在一系列标准刺激中周期性地引入偏差刺激。关键的是,研究人员严格控制了周期性变化的性质,因此只有考虑中的维度才会周期性波动。该操作允许记录与目标维度中的变化同步的神经响应,因为只有该特定维度会定期更新。目前的设计允许通过将每个维度指定为在单独的实验条件下的周期性偏差,来跟踪在数值中以及每个连续维度中的变化的神经辨别力。如果视觉系统对相对于波动维度的周期性变化很敏感,那么大脑应该产生与偏离频率及其谐波同步的反应。因此,研究人员能够记录与数值和每个连续维度的区别特别相关的大脑活动。

00

个体化精准神经成像:目前的方法和未来的方向

大多数脑功能的神经影像学研究都是在标准化空间中分析数据,以确定参与者的共同激活区域。这些研究将大脑组织的个体差异视为噪音,但这种方法可能会掩盖有关大脑功能结构的重要信息。最近,一些研究采用了针对个体的方法,旨在描述这些个体差异的特征,并探索其可靠性和对行为的影响。这些研究的一个子集采用了精确成像方法,从每个参与者那里收集多个小时的数据,以更精细的尺度绘制大脑功能。在这篇综述中,我们对特定于人的精确成像技术如何使用静息状态测量来检查大脑组织中的个体差异及其对行为的影响进行了广泛的概述,随后是基于任务的活动如何继续为这些发现添加细节。我们认为,在认知神经科学的许多领域,针对人的精确方法在揭示大脑功能组织及其与行为关系的新细节方面表现出了巨大的希望。我们还讨论了这个新领域目前的一些限制以及它可能采取的一些新方向。

04

脑电连通性:优化研究设计和评估的基本指南和检查清单

对于EEG数据有多种分析方法来评估大脑连通性。然而,连通性方法的实施存在很大的异质性。连通性测量、数据收集或者数据预处理的概念化的异质性可能与测量稳健程度的易变性有关。虽然使用不同EEG连通性测量的研究之间很难进行比较,但标准化的处理和报告可能有助于解决这个问题。本文讨论了重参考、epoch的长度和数量、容积传导的控制、伪迹去除、多重比较的统计控制等因素如何影响连通性测量的EEG连通性评估。基于先前的研究,本文提出了相关建议和新的检查清单用于EEG连通性研究的质量评估。该检查清单和建议旨在提请注意那些可能影响连通性评估的因素以及未来研究中需要改进的因素。EEG连通性程序和报告的标准化可能使得EEG连通性研究更具可综合性[如,用于元分析研究]和可比性,尽管连通性评估的方法上存在差异。

01

PNAS:大脑如何应对压力?急性压力可促进脑功能网络整合

尽管压力普遍存在,但大脑如何在应对急性压力时重新配置其多层次、层次化的功能组织仍不清楚。我们利用全脑静息状态功能磁共振成像(fMRI),通过扩展我们最近发表的嵌套谱划分方法,来检查社会压力后大脑网络的变化,该方法量化了网络分离和整合之间的功能平衡。研究发现,急性压力会使大脑进入一种更整合、更少隔离的状态,尤其是在额颞区。压力还通过减少分离状态和整合状态之间动态过渡的可变性来稳定大脑状态。转换频率与皮质醇变化有关,转换变异性与认知控制有关。我们的研究结果表明,在急性压力后,大脑网络趋向于更完整、更少变化,这可能有助于有效地应对压力。

03
领券