首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

我应该使用哪个图像大小来训练Yolov3?

YOLOv3模型训练时推荐的输入图像尺寸为416x416像素,这是基于其原始设计和在COCO数据集上的最佳表现确定的。使用此尺寸的图像进行训练可以帮助模型更好地学习目标物体的特征,同时保持计算效率和模型的泛化能力。以下是具体的原因:

YOLOv3模型训练的最佳输入图像尺寸

  • 建议尺寸:416x416像素。
  • 确定原因:这个尺寸是基于YOLOv3的原始设计和在COCO数据集上的最佳表现确定的。较大的输入尺寸可以提供更多的细节信息,有助于提高检测精度,但同时也会增加计算负担和过拟合的风险。

图像大小对YOLOv3性能的影响

  • 基础概念:图像大小直接影响到模型能够提取的特征数量,进而影响检测精度和速度。
  • 相关优势:适当增大输入图像尺寸可以提高检测精度,特别是对于小目标的检测。
  • 类型:主要考虑的是图像分辨率。
  • 应用场景:适用于需要高精度目标检测的场景。

训练过程中调整图像尺寸的考虑因素

在训练过程中,可以根据数据集的特点和计算资源的实际情况,灵活调整输入图像的尺寸。例如,对于包含更多小目标的场景,可以适当增大输入图像的尺寸以提高检测精度。反之,如果计算资源有限,可以选择较小的图像尺寸以加快训练速度。此外,还可以采用多尺度训练策略,即在训练和测试阶段使用不同的图像尺寸,以使模型能够适应不同大小的目标,从而提高其泛化能力。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

我到底应该使用哪个 CRI 替换 kubernetes 集群的 Docker?

下面是我已经测试的几个 CRI,并进行一些基准测试来对他们进行了简单的对比,希望对你有所帮助: dockershim containerd crio 对于 cri-o,已经测试了2个后端:runc 和...创建集群 这里我直接使用 molecule 创建一个集群,并配置了它在每个 worker 节点上使用不同的 cri,对应的 ansible 源码位于:https://gitlab.com/incubateur-pe...下面我们就来深入了解下,这次我们使用集群中的 Prometheus、Grafana 来可视化监控指标,对应的自定义 dashboard 数据可以在 https://gitlab.com/ulrich.giraud...但是好像我还没有回答我最初的问题,那就是:我应该为我的k8s集群使用什么CRI?...从我个人角度考虑的话,我个人的选择是:containerd,他速度快,配置方便,相当可靠和安全,不过 cri-o 已经支持 cgroupsv2 了,所以如果我使用 fedora 或者 centos/8

3.2K20

为什么你永远不应该在CSS中使用px来设置字体大小

屏幕使用称为像素的彩色光点阵来显示图像。一个像素是显示器上的一个彩色光点;硬件能够呈现的最小可能的“点”。这就是我在本节中所说的“字面上的”、“实际的”或“设备”像素;物理世界中的一个像素。...总结一下: 1em 是当前元素的字体大小。 1rem (根em)是文档的字体大小(即浏览器的字体大小)。 好的,那就是单位的含义和来源。现在让我们回答为什么使用哪个单位很重要。...即便如此,我仍建议使用 clamp() 或媒体查询来设置最小和最大值,因为屏幕尺寸往往远远超出我们所期望或测试的范围。...我们应该永远不使用 px 吗? 虽然我认为如果你选择这条路,你可能会没事,但我仍然认为 px 有其存在的意义。...我个人建议使用 rem 来设置所有的大小。我只在想要与当前字体大小成比例的东西(例如,与一些文本旁边的图标应该与字符的高度完全相同,并且在一侧有半个字符的情况)中添加 em 。

1.8K20
  • 图像自适应YOLO:恶劣天气下的目标检测

    首先将输入图像resize为256×256的大小,并将其输入CNN-PP以预测DIP的参数。然后,将DIP模块过滤后的图像作为YOLOv3检测器的输入。...DIP Module 对于CNN-PP基于梯度的优化,过滤器应该是可微的,以允许通过反向传播来训练网络。...由于CNN在处理高分辨率图像(例如4000×3000)时会消耗大量的计算资源,研究者从下采样的256×256大小的低分辨率图像中学习滤波器参数,然后将相同的滤波器应用于原始分辨率的图像。...为了解决这个限制,研究者建议使用一个小的CNN作为参数预测器来估计超参数,这是非常有效的。...它通过对多尺度特征图进行预测来实现多尺度训练,从而进一步提高检测精度,尤其是对于小物体。 采用与原始YOLOv3相同的网络架构和损失函数。

    1.9K20

    如何用YOLO+Tesseract实现定制OCR系统?

    在本文中,你将学习如何在深度学习的帮助下制作自己自定义的 OCR 来读取图像中的文字内容。我将通过 PAN-Card 图像的示例,带你学习如何进行文本检测和文本识别。...使用YOLO进行文本检测 ? YOLO 是一个最先进的实时目标检测网络,有很多版本,YOLOv3 是最新、最快的版本。 YOLOv3 使用 Darknet-53 作为特征提取程序。...所以,无论你的应用程序是什么,确保你有大约 100 个图像。如果你的图像数量较少,则使用图像增强来增加数据的大小。在图像增强中,我们主要通过改变图像的大小、方向、光线、颜色等来改变图像。...当你看到平均损失'0.xxxxxx avg'在一定次数的迭代后不再减少时,你应该停止训练。正如你在下面的图表中看到的,当损失变为常数时,我停止了 14200 次迭代。 ?...现在,你可以选择任何形式的来表示结果。在这里,我使用 excel 表格来显示结果。 我已经开放了整个管道。复制存储库并将数据文件夹和训练后生成的权重文件移动到此存储库目录。

    1.7K10

    如何用YOLO+Tesseract实现定制OCR系统?

    来源:AI开发者 在本文中,你将学习如何在深度学习的帮助下制作自己自定义的 OCR 来读取图像中的文字内容。我将通过 PAN-Card 图像的示例,带你学习如何进行文本检测和文本识别。...使用YOLO进行文本检测 ? YOLO 是一个最先进的实时目标检测网络,有很多版本,YOLOv3 是最新、最快的版本。 YOLOv3 使用 Darknet-53 作为特征提取程序。...所以,无论你的应用程序是什么,确保你有大约 100 个图像。如果你的图像数量较少,则使用图像增强来增加数据的大小。在图像增强中,我们主要通过改变图像的大小、方向、光线、颜色等来改变图像。...当你看到平均损失'0.xxxxxx avg'在一定次数的迭代后不再减少时,你应该停止训练。正如你在下面的图表中看到的,当损失变为常数时,我停止了 14200 次迭代。 ?...现在,你可以选择任何形式的来表示结果。在这里,我使用 excel 表格来显示结果。 我已经开放了整个管道。复制存储库并将数据文件夹和训练后生成的权重文件移动到此存储库目录。

    3.1K20

    YOLO升级到v3版,检测速度比R-CNN快1000倍

    YOLOv3 的创新点 YOLOv3 用了一些小技巧来改善模型训练并提高其检测性能,包括多尺度预测,更好的主干分类器等等。更多详细信息可以通过我们的论文进一步了解。...你应该根据你的需要设置不同的阈值来控制你想要的检测结果。 ▌使用网络摄像头进行实时检测 如果在测试数据上运行 YOLO 却得不到想要的检测结果,那将是很郁闷的事情。...以下我将展示是如何在 YOLO 上使用 Pascal VOC 数据集。...在这里我们使用预训练的 darknet53 模型权重,你可以点击这里下载卷积层权重( https://pjreddie.com/media/files/darknet53.conv.74 ),大小约为...以下我将展示是如何在 YOLO 上使用 COCO 数据集。 获取 COCO 数据 为了在 COCO 数据集上训练 YOLO 模型,首先你需要获取 COCO 数据及其标签。

    6.6K30

    图像自适应YOLO:模糊环境下的目标检测(附源代码)

    首先将输入图像resize为256×256的大小,并将其输入CNN-PP以预测DIP的参数。然后,将DIP模块过滤后的图像作为YOLOv3检测器的输入。...DIP Module 对于CNN-PP基于梯度的优化,过滤器应该是可微的,以允许通过反向传播来训练网络。...由于CNN在处理高分辨率图像(例如4000×3000)时会消耗大量的计算资源,研究者从下采样的256×256大小的低分辨率图像中学习滤波器参数,然后将相同的滤波器应用于原始分辨率的图像。...为了解决这个限制,研究者建议使用一个小的CNN作为参数预测器来估计超参数,这是非常有效的。...它通过对多尺度特征图进行预测来实现多尺度训练,从而进一步提高检测精度,尤其是对于小物体。 采用与原始YOLOv3相同的网络架构和损失函数。

    1.8K31

    YOLO算法最全综述:从YOLOv1到YOLOv5

    文章提出了一种新的训练方法–联合训练算法,这种算法可以把这两种的数据集混合到一起。使用一种分层的观点对物体进行分类,用巨量的分类数据集数据来扩充检测数据集,从而把两种不同的数据集混合起来。...但这引出的另一个问题是,图像分类样本的分辨率不是很高。所以YOLO v1使用ImageNet的图像分类样本采用 224*224 作为输入,来训练CNN卷积层。...在每个grid预先设定一组不同大小和宽高比的边框,来覆盖整个图像的不同位置和多种尺度,这些先验框作为预定义的候选区在神经网络中将检测其中是否存在对象,以及微调边框的位置。...YOLOv3 论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度...尺度3: 与尺度2类似,使用了32x32大小的特征图.

    1.4K51

    YOLO算法最全综述:从YOLOv1到YOLOv5

    文章提出了一种新的训练方法–联合训练算法,这种算法可以把这两种的数据集混合到一起。使用一种分层的观点对物体进行分类,用巨量的分类数据集数据来扩充检测数据集,从而把两种不同的数据集混合起来。...但这引出的另一个问题是,图像分类样本的分辨率不是很高。所以YOLO v1使用ImageNet的图像分类样本采用 224*224 作为输入,来训练CNN卷积层。...在每个grid预先设定一组不同大小和宽高比的边框,来覆盖整个图像的不同位置和多种尺度,这些先验框作为预定义的候选区在神经网络中将检测其中是否存在对象,以及微调边框的位置。...YOLOv3 论文地址: https://pjreddie.com/media/files/papers/YOLOv3.pdf YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度...尺度3: 与尺度2类似,使用了32x32大小的特征图.

    65420

    6个步骤,告诉你如何用树莓派和机器学习DIY一个车牌识别器!(附详细分析)

    他们只有一个仅50000张标签图像的小型数据集,但是他们使用的预训练模型(Inception-v4)训练了大约1400万张图像。这比最初的模型花费的训练时间和金钱较少,然而达到的准确性仍然很高。...YOLOv3 在网上可以查到很多经过预先训练的车牌模型,但没有预期的那么多,但是其中有一个训练过约3600张车牌图像。它虽然不多,但也比什么都没有强。...用它来训练数据集,然后将模型预发布到这个仓库中,以便其他人也可以使用它。在测试集中获得的mAP为90%,考虑到数据集非常小,这已经很好了。...它的使用者的任务是通过在每次向客户端广播新帧时将它们放置在非常小的缓冲区(几帧大小)中来对它们进行重新排序。该使用者正在另外一个进程上运行。...相反,作者做了以下技巧: 将宽度减小到416像素,这正是YOLOv3模型将图像调整大小的宽度。规模显然保持不变。 将图像转换为灰度。 删除了图像顶部的45%部分。

    1.6K20

    图像自适应YOLO:恶劣天气下的目标检测(附源代码)

    首先将输入图像resize为256×256的大小,并将其输入CNN-PP以预测DIP的参数。然后,将DIP模块过滤后的图像作为YOLOv3检测器的输入。...DIP Module 对于CNN-PP基于梯度的优化,过滤器应该是可微的,以允许通过反向传播来训练网络。...由于CNN在处理高分辨率图像(例如4000×3000)时会消耗大量的计算资源,研究者从下采样的256×256大小的低分辨率图像中学习滤波器参数,然后将相同的滤波器应用于原始分辨率的图像。...为了解决这个限制,研究者建议使用一个小的CNN作为参数预测器来估计超参数,这是非常有效的。...它通过对多尺度特征图进行预测来实现多尺度训练,从而进一步提高检测精度,尤其是对于小物体。 采用与原始YOLOv3相同的网络架构和损失函数。

    68820

    自适应YOLO:恶劣天气下的目标检测(附源代码)

    首先将输入图像resize为256×256的大小,并将其输入CNN-PP以预测DIP的参数。然后,将DIP模块过滤后的图像作为YOLOv3检测器的输入。...DIP Module 对于CNN-PP基于梯度的优化,过滤器应该是可微的,以允许通过反向传播来训练网络。...由于CNN在处理高分辨率图像(例如4000×3000)时会消耗大量的计算资源,研究者从下采样的256×256大小的低分辨率图像中学习滤波器参数,然后将相同的滤波器应用于原始分辨率的图像。...为了解决这个限制,研究者建议使用一个小的CNN作为参数预测器来估计超参数,这是非常有效的。...它通过对多尺度特征图进行预测来实现多尺度训练,从而进一步提高检测精度,尤其是对于小物体。 采用与原始YOLOv3相同的网络架构和损失函数。

    67441

    什么是目标检测中的平均精度均值(mAP)?

    例如,在医学图像中,我们可能希望能够计算出血流中的红细胞 (RBC)、白细胞 (WBC) 和血小板的数量,为了自动执行此操作,我们需要训练一个对象检测模型来识别这些对象并对其进行正确分类。...我们应该如何决定哪个模型更好?查看图像,看起来 EfficientDet(绿色)绘制了过多的 RBC 框,并且在图像边缘漏掉了一些细胞。这当然是从事物表面来看——但是我们可以相信图像和直觉吗?...如果我们能够直接量化每个模型在测试集中的图像、类和不同置信阈值下的表现,那就太好了。要理解平均精度均值,我们必须花一些时间来研究精度-召回曲线。 精确-召回曲线 精确是“模型猜测它正确猜测的次数?”...在实验中使用平均精度均值(mAP) 我最近在一篇文章中使用了mAP,比较了最先进的EfficientDet和YOLOv3检测模型,我想看看哪个模型在识别血液中的细胞表现更好。...在对测试集中的每个图像进行推理后,我导入了一个 python 包来计算Colab笔记本中的mAP,结果如下!

    14610

    YOLO家族系列模型的演变:从v1到v8(上)

    在YOLO出现之前,检测图像中对象的主要方法是使用不同大小的滑动窗口依次通过原始图像的各个部分,以便分类器显示图像的哪个部分包含哪个对象。这种方法是合乎逻辑的,但非常迟缓。...原始图像连续几次下采样导致精度不高。 损失同样惩罚大框和小框上的错误。作者试图通过取大小的根来补偿这种影响,但这并没有完全消除这种影响。...在第二阶段,网络训练检测在第一阶段改变的图片中的对象。 感受野增加,注意机制被使用。 应用许多附加类型的图像增强和类平衡。...创新点: 解耦头:通过分裂分支来解决分类和回归问题之间的冲突 YOLOv3头和论文所提出的解耦磁头之间的差异。...多重正采样, 在没有anchors的情况下,应该从整张图片中只选择一个正样本,这会导致其他高质量的预测被忽略。使用此类预测可以产生有用的梯度,从而减少训练期间正样本和负样本的不平衡。

    7.7K60

    亚马逊提出:目标检测训练秘籍(代码已开源)

    github: https://github.com/dmlc/gluon-cv 作者团队:Amazon Web Services 注:2019年02月11日刚出炉的paper Abstract:目标检测训练与图像分类模型的研究相比...我们的实验表明,这些训练秘籍(freebies)可以在精度上增加5%,因此每个人都应该考虑在一定程度上将这些训练秘籍应用于目标检测训练中。 ?...本论文中,将一小批N个训练图像的大小调整为Nx3xHxW,其中H和W是D = randint(1; k)的multipliers。...例如,使用H = W ∈ {320; 352; 384; 416; 448; 480; 512; 544; 576; 608} 用于YOLOv3训练。...实验结果 论文中使用 YOLOv3 和 Faster R-CNN 作为实验的目标检测框架。 YOLOv3 改进实验结果(在VOC数据集上) ?

    1.5K50

    YOLO系列:V1,V2,V3,V4简介

    其他细节,例如使用激活函数使用leak RELU,模型用ImageNet预训练等等 缺点 由于输出层为全连接层,因此在检测时,YOLO训练模型只支持与训练图像相同的输入分辨率。...因为我们的目的是提高IOU分数,这依赖于Box的大小,所以距离度量的使用: ?...YOLOV3 YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度。 速度对比如下: ?...简而言之,YOLOv3 的先验检测(Prior detection)系统将分类器或定位器重新用于执行检测任务。他们将模型应用于图像的多个位置和尺度。而那些评分较高的区域就可以视为检测结果。...尺度3: 与尺度2类似,使用了32x32大小的特征图.

    2.4K10

    YOLO 算法最全综述:从 YOLOv1 到 YOLOv5

    文章提出了一种新的训练方法–联合训练算法,这种算法可以把这两种的数据集混合到一起。使用一种分层的观点对物体进行分类,用巨量的分类数据集数据来扩充检测数据集,从而把两种不同的数据集混合起来。...但这引出的另一个问题是,图像分类样本的分辨率不是很高。所以YOLO v1使用ImageNet的图像分类样本采用 224*224 作为输入,来训练CNN卷积层。...在每个grid预先设定一组不同大小和宽高比的边框,来覆盖整个图像的不同位置和多种尺度,这些先验框作为预定义的候选区在神经网络中将检测其中是否存在对象,以及微调边框的位置。...YOLOv3 论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度...尺度3: 与尺度2类似,使用了32x32大小的特征图.

    6.2K40

    YOLO算法最全综述:从YOLOv1到YOLOv5

    文章提出了一种新的训练方法–联合训练算法,这种算法可以把这两种的数据集混合到一起。使用一种分层的观点对物体进行分类,用巨量的分类数据集数据来扩充检测数据集,从而把两种不同的数据集混合起来。...但这引出的另一个问题是,图像分类样本的分辨率不是很高。所以YOLO v1使用ImageNet的图像分类样本采用 224*224 作为输入,来训练CNN卷积层。...在每个grid预先设定一组不同大小和宽高比的边框,来覆盖整个图像的不同位置和多种尺度,这些先验框作为预定义的候选区在神经网络中将检测其中是否存在对象,以及微调边框的位置。...YOLOv3 论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度...尺度3: 与尺度2类似,使用了32x32大小的特征图.

    2.5K10

    从YOLOv1到YOLOv3,目标检测的进化之路

    YOLO v2 使用全局平均池化,使用 Batch Normilazation 来让训练更稳定,加速收敛,使模型规范化。...YOLO9000 的训练基于 YOLO v2 的构架,但是使用 3 priors 而不是 5 来限制输出的大小。...使用 WordTree 来混合来自不同的资源的训练数据,并使用联合优化技术同时在 ImageNet 和 COCO 数据集上进行训练,YOLO9000 进一步缩小了监测数据集与识别数据集之间的大小代沟。...YOLOv3 YOLOv3 在 Pascal Titan X 上处理 608x608 图像速度可以达到 20FPS,在 COCO test-dev 上 mAP@0.5 达到 57.9%,与RetinaNet...YOLO v3 的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度。 速度对比如下: ‘ YOLOv3 在实现相同准确度下要显著地比其它检测方法快。

    1.3K30
    领券