首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    多个线程如何轮流打印ABC特定的次数?

    ,轮流打印特定顺序的信息多少次。...这类问题其实并不难,只要掌握了Java里面线程协作和锁的知识,就可以轻而易举的搞定: 根据这些,我们来假设一个场景,使用三个线程轮流打印ABC字符串3次。...但是呢,他们必须是有顺序,也就是说A打印完之后,才能打印B,B打印完后才行打印C,这就涉及线程协作和通信的知识了,A线程打印完毕之后,要通知B线程打印,B线程打印完之后要通知C线程打印,如果有多轮的话,...A运行 (8)同时,如果要控制几轮打印,则需要在运行时控制循环次数,因为C线程是每一轮的结束标志,循环次数的加和要在C线程里面做。...ok,主要的逻辑基本理清了,我们看下如何用代码实现,先看核心的类: 定义了共享的监视器对象,计数器,共享变量,然后定义了三个方法分别负责打印A,B,C,功能的实现主要用了synchronized + 监视器的

    2.9K30

    pandas按行按列遍历Dataframe的几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...(inp) print(df) 1 2 3 4 5 6 按行遍历iterrows(): for index, row in df.iterrows(): print(index) # 输出每行的索引值...1 2 row[‘name’] # 对于每一行,通过列名name访问对应的元素 for row in df.iterrows(): print(row[‘c1’], row[‘c2’]) #

    9.1K20

    R语言:以多列标准筛选特定行

    写在前面 本期我们大猫二人组的村长在新的一年首先回归,为大家带来新的推送。...这是一个病例数据,包含多个患者的诊断的时间,以及多个诊断的结果,在这里读者便提出,需要在所有这些诊断结果里面筛选出所有出现过醛固酮,但不包括继发性醛固酮的所有行。...我们先把这一行代码优雅的放上来(PS: 在运行这一行代码前我们已经对数据进行了适当清洗,批量生成了22个带'_xtrct'后缀的变量,观察值是醛固酮、继发性醛固酮或者无,但这部分批量生成的代码不作为这次讲解的内容...那么在这里求每一行的均值,只要出现了醛固酮,那就会至少出现一个TRUE,那么行的均值就肯定大于零,所以就将出现了醛固酮的行全都标记出来了,同理可得下面这行代码: rowMeans(clinic[, 31...= "继发性醛固酮") == 1 标记出了所有没有出现继发性醛固酮的行。

    2.3K40

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    下面我们来逐行分析代码的具体实现: import numpy as np import pandas as pd 这两行代码导入了 numpy 和 pandas 库。...data = {'label': [1, 2, 3, 4]} df = pd.DataFrame(data) 这两行代码创建了一个包含单列数据的 DataFrame。...random_array = np.random.rand(4, 2) 此行代码使用 numpy 库生成一个形状为 4x2(即 4 行 2 列)的随机数数组。...print(random_array) print(values_array) 上面两行代码分别打印出前面生成的随机数数组和从 DataFrame 提取出来的值组成的数组。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    4.3K00

    【疑惑】如何从 Spark 的 DataFrame 中取出具体某一行?

    如何从 Spark 的 DataFrame 中取出具体某一行?...根据阿里专家Spark的DataFrame不是真正的DataFrame-秦续业的文章-知乎[1]的文章: DataFrame 应该有『保证顺序,行列对称』等规律 因此「Spark DataFrame 和...我们可以明确一个前提:Spark 中 DataFrame 是 RDD 的扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 的操作来取出其某一行。...但是现在我有个需求,分箱,具体来讲,需要『排序后遍历每一行及其邻居比如 i 与 i+j』,因此,我们必须能够获取数据的某一行! 不知道有没有高手有好的方法?我只想到了以下几招!...我的数据有 2e5 * 2e4 这么多,因此 select 后只剩一列大小为 2e5 * 1 ,还是可以 collect 的。 这显然不是个好方法!因为无法处理真正的大数据,比如行很多时。

    5.2K30

    Pandas个人操作练习(1)创建dataframe及插入列、行操作

    (data = data) 二、dataframe插入列/多列 添加一列数据,,把dataframe如df1中的一列或若干列加入另一个dataframe,如df2 思路:先把数据按列分割,然后再把分出去的列重新插入...关键点是axis=1,指明是列的拼接 三、dataframe插入行 插入行数据,前提是要插入的这一行的值的个数能与dataframe中的列数对应且列名相同,思路:先切割,再拼接。...假如要插入的dataframe如df3有5列,分别为[‘date’,’spring’,’summer’,’autumn’,’winter’], (1)插入空白一行 方法一:利用append方法将它们拼接起来...df3相同,取df4的行插入df3中 df4 = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4], 'attr': [22...columns={'1':'date', '2':'spring','3':'summer', '4':'autumn','5':'winter'}, inplace = True) 根据索引取得这一行的值的不同用法

    3.1K20
    领券