分享 这系列收集OpenGL ES的应用。 iOS开发-OpenGLES画图应用 这篇介绍的3D魔方(原文地址),重点是魔方的旋转与点击的判断。 效果展示 概念准备 拾取 把地形的位置坐标编码到片元
小程序 https://www.bilibili.com/video/BV1sg4y1d75T/?share_source=copy_web&vd_source=11344bb73ef9b33550b8202d07ae139b
在上一篇案例中实现了几何体-球体旋转效果,今天继续丰富这个案例效果,在球体的周围添加光圈及旋转模块(图片+文字组成),均匀的分布在球体周围,围绕着球体逆时针旋转,最终效果如图:
1. 介绍 1.1 什么是数据可视化? 可视化是利用计算机图形学和图像处理技术,将数据转换成图形或者图像在屏幕上显示出来,再进行交互处理的理论、方法和技术。 数据可视化并不是简单的将数据变成图表,而是以数据为视角,看待世界。数据可视化就是将抽象概念形象化表达,将抽象语言具体化的过程。 1.2 为什么要用数据可视化 首先我们利用视觉获取的信息量绝对远远的比别的感官要多得多。 它能帮助分析的人对数据有更全面的认识,下面举个🌰 我们看下面几组数据: 对数据进行简单的数据分析,每组数据都有两个变量 X 和 Y,然
源站地图默认无法展示(展示需要使用VPN,建议通过查询的经纬度去百度坐标拾取系统查询)。通过源站的经纬度去百度坐标拾取输入地址转换即可获取地图了!
客户端日常开发中经常遇到各种低效痛点,比如开发 UI 界面时,开发、设计同学走查 UI 基本靠眼,不易于发现问题;设计同学想修改一个 UI 元素,除非是原开发者,其他同学不知道相关的 UI 类和 UI 布局,定位代码费时费力;再如出现 Bug 时无法在 Bug 现场获取数据定位问题,Debug 依赖电脑联调,缺少独立便捷的 Debug 工具。
机器之心发布 实在智能 2022年3月31日,春至。 实在智能召开RPA行业2022年首场产品发布会。如同007系列电影一样,“AI你所爱 新益求新”的发布会结束语中已悄然埋下伏笔: 不说再见,下一次发布会,与您在更高峰相见! 2022年12月7日,大雪。 春去冬来,实在的承诺如约而至,憋足劲儿的“蝶变·新番”实在智能2022冬季新品发布会重磅登场: 这是一场震撼行业的RPA发布会! 打破传统,变革模式。 本次发布会从功能和体验两个维度带来了实实在在的“科技与狠活”,一言以蔽之: 一款真正人人可用的RPA。
本文来自小鱼在家首席音频科学家邓滨在LiveVideoStackCon 2018讲师热身分享,并由LiveVideoStack整理而成。邓滨认为,传统的信号处理与前沿的深度学习技术结合,才能实现准
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
这里记录一段时间我在互联网上看到的有意思的内容与信息,防止它们在我的脑袋里走丢了。
今天发现一个超级好用的工具,屏幕颜色拾取工具,以前对图片取色的时候,还需要打开photoshop,将图片导入,打开ps工具的时候,还得等待一会的时间,现在发现了这款工具,就可以直接在屏幕上或者浏览器取色了。
最近在开发中碰到关于颜色拾取器的需求,正好搜索了一些不错的JavaScript颜色选择器插件。这里把自己整理的内容分享给大家。
在流程定义中在任务结点的 assignee 固定设置任务负责人,在流程定义时将参与者固定设置在.bpmn 文件中,如果临时任务负责人变更则需要修改流程定义,系统可扩展性差。针对这种情况可以给任务设置多个候选人或者候选人组,可以从候选人中选择参与者来完成任务。
在现实世界里,人类尤其具有这种将复杂任务有效分解为多个子任务的能力。这种能力帮助人类面对新环境时加速自身的学习过程并获得更好的泛化能力。
RPA,全称机器人流程自动化技术。该技术可按照事先设定的流程,控制计算机完成鼠标点击、数据处理、跨软件操作等任务,已广泛应用于金融、电商、运营商、政务、物流、制造等众多行业领域,在财务、税务、人力、内审、法务、风控、客服、运营、IT 等劳动密集型场景取得了非常好的降本增效成果。据 IDC(国际数据公司)统计预测,2018-2023 年全球 RPA 市场规模将持续上涨, 2023 年达到 39 亿美元。而中国 RPA 市场规模则将以 64% 的年复合增长率扩张至 10.2 亿美元。
作为一个WebGIS开发,从前端往GIS靠拢,虽说不是纯GIS,但是也了解到一些相关GIS上的东西
亿信BI中的分析表大多数都是基于主题表而创建的。那什么是主题?什么是主题表?主题表分哪几种类型、何种场景下使用、又是如何创建的?不同类型的主题表有什么区别等等,这就是我们今天要分享的内容。 什么是主题表? 主题是来自于数据仓库中的一个概念。根据项目需求,数据仓库需要进行主题建模,即根据用户决策时所关心的重点进行源数据的抽取、聚集等,将分散在各个业务系统中的数据根据主题有效的集成,形成事实表。亿信BI根据事实表生成主题表,以方便用户定义分析报表时拾取维度和指标,这就是BI的主题表。 主题表的分类 亿信BI中定
自上次参加完回音分享会后,我下定决心要洗心革面乖乖打基础,于是开启了这个part,争取两个月不间断更新,写完Material Design与iOS中的组件(顺便学学英语),以便今后在使用的时候完全不虚
给杂货拆包是一件简单但乏味的工作:手伸进包里,摸索着找到一件东西,然后把它拿出来。简单瞄一眼之后,你会了解这是什么东西,它应该存放在哪里 如今,麻省理工学院和普林斯顿大学的工程师们已经开发出一种机器人系统,未来有一天,他们可能会帮你完成这项家务,并协助其他拣选和分拣工作,例如在仓库组织产品,或在宅区清除瓦砾。 该团队的“拾放”系统由一个标准的工业机器人手臂组成,研究人员配备了一个定制抓手和吸盘。他们开发了一种“未知物体”的抓取算法,使机器人能够评估一堆随机物体,并确定在杂物中抓取或吸附物品的最佳方式,而
SVGEdit 一款非常老牌的 SVG 图形编辑器,用于编辑处理 SVG,star 数目前是 5.8k。
有时你遇到一篇古老的文献,PDF文档还是扫描版。又或者是遇到一幅网页版海报,上面的文字你完全看不懂。
当候选人很多的情况下,我们可以分组来处理。先创建组,然后把用户分配到这个组中。
跟ERP、CRM、OA等职能型软件不同,RPA属于业务型软件,跟业务的关联更加紧密。要想实现RPA普惠化,最关键的是要让业务人员可以很好的使用RPA产品来解决其业务问题。业务人员是不懂IT的,因此,如何降低RPA产品的“IT属性”,某种程度上决定了RPA能走多远。
IOS(左)和Android(右)的电子邮件input的键盘
团队提供了完整的,没有经过筛选的实验结果。他们在实验室周边随机选取了 out-of-distribution (训练集外)测试样本。
AI 科技评论按:机器学习能让机器人学会复杂的技能,例如抓住把手打开门。然而学习这些技能需要先人工编写一个奖励函数,然后才能让机器人开始优化它。相比之下,人类可以通过观察别人的做法来理解任务的目标,或者只是被告知目标是什么,就可以完成任务。目前,谷歌期望通过教会机器人理解语义概念,以使得机器人能够从人类的示范中学习动作,以及理解物体的语义概念,完成抓取动作。 以下为 AI 科技评论编译的这篇谷歌博客的部分内容。 问题的引入 人类与机器人不同,我们不需要编写目标函数即可以完成许多复杂的任务。我们可以这样做,是
快到周末了,几个远在各个区的朋友想要聚餐,为了照顾到彼此的距离,决定计算一下所有人的中心点,至此需求产生,下面开始编写代码。
FreeHttp是一个Fiddler插件借助FreeHttp您可按照您自己的设定修改请求或响应报文
作为Web应用中最常见的数据传输协议之一的Websocket,在我们日常工作中也势必会经常使用到,而在调试或测试中我们常常也有直接改变Websocket数据报文以确认其对应用的影响的需求,本文将介绍一种灵活方便的方式篡改Websocket收发的数据。
Mastercam软件中常用的2D刀路指令有平面铣削、动态铣削、外形铣削、区域铣削、模型倒角5个刀路指令。
这是一个非常实用的颜色编辑拾取工具,它基于vue框架实现,可以很好的生成CSS3中常用的渐变色代码。我们在CSS3代码中经常会用到一些颜色渐变的特效,但是大部分人都对颜色代码值非常不敏感,尤其是渐变色的颜色值。这款vue圆形CSS3渐变色拾取器用一种可视化的方式帮助开发者生成渐变色的代码值,使用非常方便。
FreeHttp是一个Fiddler插件借助FreeHttp您可按照您自己的设定修改请求或响应报文,这对测试及调试都非常有用
前几天群里有人发了一个新 Canvas 渲染引擎的图片,看数据和宣传口号相当炸裂,号称只用 1.5s 可以渲染 100 万个矩形,还是个国产的。
现实生活中,我们经常会遇到配色的问题,这个时候去百度一下RGB表。而RGB表只提供相对于的颜色的RGB值而没有可以验证的模块。
[1]GitHub: https://github.com/WPFDevelopersOrg/SoftwareHelper
本章将介绍卷积神经网络。它是近年来深度学习能在计算机视觉领域取得突破性成果的基石。它也逐渐在被其他诸如自然语言处理、推荐系统和语音识别等领域广泛使用。我们将先描述卷积神经网络中卷积层和池化层的工作原理,并解释填充、步幅、输入通道和输出通道的含义。在掌握了这些基础知识以后,我们将探究数个具有代表性的深度卷积神经网络的设计思路。这些模型包括最早提出的AlexNet,以及后来的使用重复元素的网络(VGG)、网络中的网络(NiN)、含并行连结的网络(GoogLeNet)、残差网络(ResNet)和稠密连接网络(DenseNet)。它们中有不少在过去几年的ImageNet比赛(一个著名的计算机视觉竞赛)中大放异彩。虽然深度模型看上去只是具有很多层的神经网络,然而获得有效的深度模型并不容易。有幸的是,本章阐述的批量归一化和残差网络为训练和设计深度模型提供了两类重要思路。
地图应用非常广泛,目前地图服务,都提供地图操作、标注、地点搜索、出行规划、地址解析、街景等接口,功能非常丰富。在实际开发过程中,各有优劣。本次基于需求,使用腾讯位置服务作为一个公用厕所位置标注的H5页面开发。
matplotlib 使用了许多用户界面工具包(wxpython,tkinter,qt4,gtk 和 macosx),为了支持交互式平移和缩放图形等功能,拥有一套 API 通过按键和鼠标移动与图形交互,并且『GUI中立』,对开发人员十分有帮助,所以我们不必重复大量的代码来跨不同的用户界面。虽然事件处理 API 是 GUI 中立的,但它是基于 GTK 模型,这是 matplotlib 支持的第一个用户界面。与标准 GUI 事件相比,被触发的事件也比 matplotlib 丰富一些,例如包括发生事件的matplotlib.axes.Axes的信息。事件还能够理解 matplotlib 坐标系,并且在事件中以像素和数据坐标为单位报告事件位置。
图形拾取,指的是用户通过鼠标或手指在图形界面上能选中图形的能力。图形拾取技术是之后的高亮图形、拖拽图形、点击触发事件的基础。
手机端的OCR文字识别工具给大家推荐过白描和白描取字,PC端以前推荐过天若OCR,当时的感觉时这是一款ABBYY FineReader不错的替代品,但是经过几个版本的更新以后,功能越来越强大,天若OCR已经完全超过了ABBYY FineReader,列入课代表的开机自启必备名单中。
几十年来,装配线等受控环境中的机器人能够一次又一次地拾取同一物体。最近,计算机视觉的突破使机器人能够在物体之间进行基本区分。尽管如此,系统并没有真正理解物体的形状,因此机器人在快速拾取后几乎没什么用了。
在国内必须至少使用GCJ-02的坐标系,而GCJ-02,“火星坐标”是在国内最广泛使用的坐标体系。那么,我们就来看看,如何直接获取到GCJ-02坐标呗。 请大家把这段代码保存到记事本里,然后后缀名改为.html,记得用UTF-8编码来保存。然后双击这个文件,就能打开网页了。
在百度地图开放平台(http://lbsyun.baidu.com/)登录账号新建应用,应用类型选择浏览器端,建立完成后我们会得到应用AK。
选自arXiv 机器之心编译 编辑:小舟、蛋酱 世界模型在实体机器人上能发挥多大的作用? 教机器人解决现实世界中的复杂任务,一直是机器人研究的基础问题。深度强化学习提供了一种流行的机器人学习方法,让机器人能够通过反复试验改善其行为。然而,当前的算法需要与环境进行过多的交互才能学习成功,这使得它们不适用于某些现实世界的任务。 为现实世界学习准确的世界模型是一个巨大的开放性挑战。在最近的一项研究中,UC 伯克利的研究者利用 Dreamer 世界模型的最新进展,在最直接和最基本的问题设置中训练了各种机器人:无
光标停留在图形上方,按下鼠标左键,这个图形就被选中了。这就是一个简单的选中了单个图形的场景。
机器之心报道 演讲:孙林君 编辑:小舟 9 月 3 日,在 2022 WAIC AI 开发者日上,实在智能创始人、CEO 孙林君发表主题演讲《数字员工——AI 在 RPA 领域的应用与落地》,详细介绍了 AI 加持的 RPA 技术近年来的发展,以及实在智能在数字员工方向的探索和应用。 以下为孙林君的演讲内容,机器之心进行了不改变原意的编辑、整理: 大家好,非常荣幸能够来到这个场合跟大家做分享,我今天带来的话题是《数字员工——AI 在 RPA 领域的应用与落地》。 AI 是一种通用的智能化技术,但过去在泛行
领取专属 10元无门槛券
手把手带您无忧上云