机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
同样是预测房价问题 如果有多个特征值
?
?...如何选择学习率α呢
梯度下降算法的每次迭代受到学习率的影响,如果学习率 过小,则达到收敛所需的迭代次数会非常高,如果学习率过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。...通常可以考虑尝试些学习率:0.01,0.03,0.3,1,3,10
而有的时候线性回归并不适用于所有的模型,这个时候我们要考虑用多项式模型
?...这个时候特征缩放就很重要
梯度下降 线性回归的python代码
# -*- coding=utf8 -*-
import math;
def sum_of_gradient(x, y, thetas...= [5, 9, 13];
stepSize = 0.001;
t0, t1 = gradient_descent(-stepSize, x, y);
print t0, " ", t1;
线性回归还有一种更简单的