首页
学习
活动
专区
圈层
工具
发布

谈谈数据异构

这就是我今天要和大家讨论的数据异构,将数据进行异地异构存储,比如说需要整合多张表数据构成一条记录然后异地存储。 我们先来看下第一种方案,就是双写,业务代码在对数据库操作时同步缓存。...你可能看到过这种方案,更新操作时,先删除缓存后更新数据库,让查询操作来同步刷数据到缓存,这种方案最大的问题就是如果你删除的缓存是热点数据,那将导致大量的请求直接达到数据库。...不过这种方式对数据库有很大的轮询压力,所以一般都不采用这种方式。 那有没有更好的方案完成数据异构呢?答案就是利用Mysql的binlog日记。...可以看出binlog日记具备高可靠性、低时延性,所以我们可以利用binlog日记来完成数据异构。...好,今天我主要和你讨论了关于如何利用数据异构实现多级缓存,这个技术还可以解决下面这种问题,比如数据库分库分表后如何进行数据迁移,当然后者的实现更加复杂,需要考虑数据校验问题,就不再展开了。

3.4K30

【机器学习】---异构数据融合

本文将详细讨论异构数据融合的概念、常用的技术手段、挑战以及代码示例。 2. 异构数据融合的概念 异构数据是指数据在格式、维度、来源等方面存在差异。...根据异构性的不同,可以将异构数据大致分为以下几类: 模态异构:不同类型的数据模态,例如文本、图像、音频等。 结构异构:数据的结构形式不同,如关系型数据库中的表数据与社交网络中的图数据。...时间异构:数据的时间分布不同,例如历史数据与实时数据的融合。 空间异构:数据来自不同的地理位置,或具有空间相关性。 分辨率异构:数据的精度或粒度不同,例如卫星图像中的低分辨率和高分辨率图像。...,特别适用于处理大规模复杂异构数据。...异构数据融合的挑战 虽然异构数据融合在理论上可以带来显著的性能提升,但在实际应用中依然面临着诸多挑战: 4.1 数据预处理与对齐 异构数据可能具有不同的时间和空间分布,因此在进行融合之前,需要进行数据对齐

71810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    异构数据同步工具tapdata使用记录

    config复制集一个) 集群构架如下: tapdata部署服务器 192.168.175.232(测试可集成于其中一台服务器) Mysql 集群环境本意是通过写节点进行访问,做数据导出,测试时还是真连了主库...也可在本地使用命令行方式对其进行管控,如果你的本地部署环境无法连通公网,那么你可能无法在 Agent 管理页面看到对应 Tapdata Agent 注意 每个免费用户同一时刻只可运行一个Tapdata Agent 创建连接数据源...安装完成后,重新tapdata页面,创建数据源连接 在连接管理中,创建数据源,mysql正常提供IP,PORT,HOST即可正常连接,对于MongDB,要注意其URL的写法 [image.png] 我这里测试创建多添加了几个...通过可用数据源创建同步任务 [image.png] [image.png] 开户同步任务 [image.png] 备注:开启同步任务与上一步图中创建任务名称不同,还请使用时,开启自己创建的同名任务 点开运行监控选项

    2.7K150

    数据异构的武器:BINLOG+MQ

    这个时候通过数据异构就能很好的解决此问题。 1、定义 何谓数据异构,上周交易部门商品的同事过来做分享,又看到这个词,他的PPT里面是 数据库异构。其实我们以前做的事情,也是可以成为数据异构。...比如我们将DB里面的数据持久化到REDIS里面去,就是一种数据异构的方式。如果要下个定义的话:把数据按需(数据结构、存取方式、存取形式)异地构建存储。...这个时候通过数据异构就能很好的解决此问题,比如下图 ?...异构维度.png 总结起来大概有以下几种场景 数据库镜像 数据库实时备份 多级索引 search build(比如分库分表后的多维度数据查询) 业务cache刷新 价格、库存变化等重要业务消息 3、数据异构方向...4、数据异构的常用方法 4.1、完整克隆 这个很简单就是将数据库A,全部拷贝一份到数据库B,这样的使用场景是离线统计跑任务脚本的时候可以。缺点也很突出,不适用于持续增长的数据。

    2.9K70

    数据异构重器之 Canal 初探

    即 Canal 一个非常常用的使用场景:数据异构,一种更高级别的数据读写分离架构设计方法。...,数据进入到用户订单库中,然后可以通过 canal 监听数据库的binlog日志,然后将数据再同步到商家订单库,而用户订单库以用户ID为维度进行分库,商家订单库以商家ID做分库,完美解决问题。...基于 MySQL 这种数据同步机制,那 Canal 的设计目标主要就是实现数据的同步,即数据的复制,从上面的图自然而然的想到了如下的设计: ?...(数据源接入,模拟slave协议和master进行交互,协议解析) eventSink (Parser和Store链接器,进行数据过滤,加工,分发的工作) eventStore (数据存储) metaManager...在数据库中变更一条数据,以便产生新的binlog日志,其输出结果如下: ?

    1.4K20

    数据异构就该这样做,yyds~

    何谓数据异构,上周交易部门商品的同事过来做分享,又看到这个词,他的PPT里面是 数据库异构。其实我们以前做的事情,也是可以称之为数据异构。...比如我们将DB里面的数据持久化到Redis里面去,就是一种数据异构的方式。 如果要下个定义的话:把数据按需(数据结构、存取方式、存取形式)异地构建存储。...这个时候通过数据异构就能很好的解决此问题,如下图: 异构维度 数据异构总结起来大概有以下几种场景 数据库镜像 数据库实时备份 多级索引 search build(比如分库分表后的多维度数据查询) 业务...cache刷新 价格、库存变化等重要业务消息 数据异构方向 异构的几种方向 在日常业务开发中大致可以分为以上几种数据去向,DB-DB这种方式,一般常见于分库分表后,聚合查询的时候,比如我们按照订单ID...数据异构这种方式都能够很好的帮助我们来解决诸如此类的问题。

    98120

    异构数据库迁移的曲折之路

    这里就将常见的一些问题整理出来,希望能够在数据库选型及评估数据库迁移风险等方面有所帮助。为了描述清晰,我将整个迁移过程划分为几个阶段,其中橙色标识工作为数据库团队来支持。...3).对象评估 完成应用评估后,下面就是数据库评估的。其评估的第一项就是对象评估,即对数据结构的评估。数据库的能力层次不齐,原有的数据结构大概率都无法直接复用了,需要进行必要的调整甚至重新设计。...2).数据校验 数据迁移后,在上线前还需要对数据同步后的质量有所判断,这就引入数据校验的初衷。严格来讲,这是数据质量保证的一部分。...这里存在几个难点,一是海量数据如何快速比对,二是异构条件下数据如何比对,三是两侧数据同步变化时如何比对?目前已经有些产品能够支持较为完整的数据校验功能。个人也是比较建议,在数据迁移后进行对比。...1).数据库运维 迁移完成,系统上线后就进入到运行保障阶段。从数据库来说,提供的基本能力之一就是基于新数据库架构下的运维能力。

    1.5K30

    springboot+Mybatis-Plus实现异构数据迁移

    mapper映射文件、Service接口、service实现类application.ymlspring: datasource: dynamic: primary: #设置默认的数据源或者数据源组...,默认值即为master strict: false #严格匹配数据源,默认false. true未匹配到指定数据源时抛异常,false使用默认数据源 datasource:...Controller 层代码,支持模板引擎,更有超多自定义配置等您来使用内置分页插件:基于 MyBatis 物理分页,开发者无需关心具体操作,配置好插件之后,写分页等同于普通 List 查询分页插件支持多种数据库...:支持 MySQL、MariaDB、Oracle、DB2、H2、HSQL、SQLite、Postgre、SQLServer 等多种数据库内置性能分析插件:可输出 SQL 语句以及其执行时间,建议开发测试时启用该功能...,能快速揪出慢查询内置全局拦截插件:提供全表 delete 、 update 操作智能分析阻断,也可自定义拦截规则,预防误操作我正在参与 腾讯云开发者社区数据库专题有奖征文。

    99130

    YashanDB支持的异构数据集成技术介绍

    在当前数据驱动的业务环境中,数据来源多样化带来了异构数据集成的需求。数据库系统需处理不同结构、格式与源头的数据,保障数据一致性、访问效率和高可用性。...异构数据集成不仅涉及底层存储与计算架构的支持,还包括数据访问、事务管理及安全机制的协调。...多种网络和缓存机制协同保障跨节点数据同步与并发一致,为异构数据集成中的数据高可用提供技术保障。...技术落地建议根据业务场景合理选择YashanDB的部署形态,单机部署适用于轻量级异构数据集成,分布式集群满足大规模异构数据融合,而共享集群部署适合多实例高并发写入的场景。...实施严格的安全管理,管理访问控制、审计与加密机制,满足数据安全法规合规性,确保异构数据在集成过程中的凭证安全和访问合规。结论YashanDB通过多层次的技术架构,完整支持异构数据集成场景的多样化需求。

    14410

    异构数据源同步之数据同步 → DataX 使用细节

    得益于它的框架设计 Reader:数据采集模块,负责采集源数据源的数据,并将数据发送给 FrameWork Writer:数据写入模块,不断从 FrameWork 取数据,并将数据写入目标数据源 FrameWork...:核心模块,用于连接 Reader 和 Writer,作为两者的数据传输通道,并处理缓冲、流控、并发、数据转换等核心问题 我们很容易实现二次开发,当然主要是针对新插件的开发。...、写 TDengine √ √ 读 、写 囊括了绝大部分数据源,我们直接拿来用就行;如果如上数据源都未包括你们需要的数据源,你们也可以自实现插件,参考 DataX插件开发宝典 即可 如果只是使用 DataX...同步正常,数据却乱了 对调下 Writer 的 username 和 pw 执行同步任务,会发现同步没有出现异常,但你们看一眼目标数据源的数据 很明显脏数据了,这算同步成功还是同步失败...示例的脏数据很容易能够看出来,如果出现两列很类似的数据,那就麻烦了,等待我们的就是长夜漫漫的 bug 排查之旅 table 在 Reader 表示从哪读数据,在 Writer 表示往哪写数据;Reader

    2.6K10

    2018-07-07 EOS 区块链数据实时异构到 MySQLEOS 区块链数据实时异构到 MySQL

    再不学点区块链就晚了 EOS 区块链数据实时异构到 MySQL Posted in Blockchain and tagged Blockchain , EOS on Jul 6, 2018....团队做一些开发需要取 EOS 链上数据,但无法直接从 EOS 区块链中获取。#3882 提供 EOS 链上数据导入 MySQL,可以很方便的读取历史数据。...#3882 提交的内容打包,提交了个一个 repo,链接如下: https://github.com/superoneio/eos_sql_db_plugin 接下来本文将讲解如何将 EOS 链上数据异构到...,分配用户名 导入 eos 表结构 启动 nodeos,同步主网数据 查看 MySQL,确认数据 接下来我们逐步讲解。...最后执行 start.sh,登录 MySQL 数据库就可以查看到相关数据。

    97830

    HDFS 异构存储

    需求 Hadoop 从 2.4 后开始支持异构存储,异构存储是为了解决爆炸式的存储容量增长以及计算能力增长所带来的数据存储需求,一份数据热数据在经历计算产生出新的数据,那么原始数据有可能变为冷数据,随着数据不断增长差异化存储变的非常迫切...,需要经常被计算或者读取的热数据为了保证性能需要存储在高速存储设备上,当一些数据变为冷数据后不经常会用到的数据会变为归档数据,可以使用大容量性能要差一些的存储设备来存储来减少存储成本,HDFS 可以按照一定的规则来存储这些数据...fallback 情况时的可选存储类型,这里出现了 fallback 的情况,什么叫做 fallback 的情况呢,当前存储类型不可用的时候,退一级所选择使用的存储类型 测试环境验证 环境信息准备 数据拷贝数...ssd,一半的块在普通盘 数据降冷 Warm 到 Clod 查看 Clod 目录存储策略 [hadoop@100 /usr/local/service/40028/hadoop]$ bin/hdfs...数据生热 cold 到 warm 移动数据到 hot 目录 bin/hadoop fs -mv /cold/data /warm 执行 mover bin/hdfs mover 检查数据块分布 bin

    4.3K21

    YashanDB数据库的异构数据集成与利用方法

    在现代企业中,异构数据的集成对于数据的利用和决策支持越来越重要。众多组织面临着如何高效整合和管理来自多个源的大量数据问题。这不仅影响到数据库的性能,还关乎数据的一致性和完整性。...YashanDB支持通过广泛的API和驱动程序(如JDBC、ODBC等)进行外部数据源的接入,旨在实现与异构数据源的无缝协作。...数据来源集成YashanDB能够集成来自各种异构数据源的数据,包括但不限于关系数据库、NoSQL系统和外部API数据。...总结与建议利用ETL工具实现有效的异构数据整合,确保数据清洗与转化后的目标数据质量。持续监控与评估数据查询性能,以便进行必要的优化与调整。...结论随着数据量的增加与异构系统的丰富,数据集成与利用的重要性愈加凸显。YashanDB凭借其强大的数据库架构和高效的数据管理机制,能够有效解决异构数据集成与利用中的各种挑战。

    8500

    怎样做YashanDB支持异构数据源整合

    引言在快速发展的现代信息技术环境中,数据源的异构性成为了企业面临的一大挑战。不同的数据存储系统采用不同的数据模型、存储结构及查询语言,导致数据整合的复杂性显著增加。...尤其是在数据驱动的决策制定中,如何有效整合来自各类异构数据源的数据成为企业实现数字化转型的关键。YashanDB作为一款高性能的数据库引擎,具备强大的异构数据源整合能力。...本文旨在探讨YashanDB如何支持异构数据源整合的技术原理和实现方法,以期为相关开发人员、DBA及系统架构师提供技术支持。YashanDB的异构数据源整合能力1....这使得异构数据源的接入和整合变得更加灵活高效,为数据分析与决策提供了有力支持。5. 数据一致性保障数据一致性是异构数据源整合中的重要问题。...结论YashanDB以其灵活的存储架构、丰富的数据访问协议及强大的数据整合能力,成为解决异构数据源整合问题的理想选择。

    16500

    深入探讨YashanDB的异构数据整合能力

    在现代信息系统中,数据的异构性日益显著,企业往往需要同时处理结构化、半结构化以及多源异构数据。这种多样化的数据格式和存储方式给数据的统一管理和高效查询带来了严峻挑战。...如何实现异构数据的高效整合,成为提升企业数据价值的重要技术命题。YashanDB以其先进的体系架构和灵活的部署形态,为异构数据整合提供了坚实的技术保障。...异构数据整合的架构基础YashanDB支持单机、分布式及共享集群三种部署形态,这三种形态为异构数据的多样化存储和访问提供系统级的支持。...在异构数据场景下,元数据能够统一映射异构数据的物理和逻辑结构。...完善安全策略,结合身份认证、访问控制与加密技术,保障异构数据访问安全。利用数据字典和元数据缓存技术,维护异构数据统一视图方便管理和查询。

    11510

    传统集成异构和集成平台异构有什么区别?

    为了实现数据的互联互通和业务的顺畅运行,异构系统的集成成为了企业信息化建设的必然选择。然而,传统异构和集成平台异构在实现方式和效果上存在显著差异。传统集成异构与集成平台异构的对比1....集成平台异构:相比之下,集成平台异构的实施难度较低,成本也更可控。企业只需通过统一的集成平台接入各个异构系统,无需为每个系统单独开发适配器。这大大降低了实施难度和成本,同时也提高了系统的可维护性。...灵活性与响应速度传统集成异构:传统异构系统在面对业务变化时,灵活性较差。新增系统或修改现有系统的接口需要耗费大量时间和资源,无法快速响应业务需求的变化。...数据安全与一致性传统集成异构:在数据安全和一致性方面,传统异构系统存在较大隐患。由于各个系统之间的数据格式和传输协议不统一,容易出现数据丢失、重复或错误的情况。此外,数据安全问题也难以得到有效保障。...集成平台异构:集成平台异构通过统一的数据模型和安全机制,确保数据的安全性和一致性。平台提供了丰富的数据校验、转换和加密功能,保障数据的完整性和保密性。这有助于企业建立更加可靠的数据管理体系。

    43821

    “多源异构”和“异构同源”定义区分详解「建议收藏」

    一、多源异构 1、定义 多源异构简单而言就是指一个整体由多个不同来源的成分而构成,既有混合型数据(包括结构化和非结构化)又有离散性数据(数据分布在不同的系统或平台),互联网就是一个典型的异构网络,融合传播矩阵就是一个典型的多源异构数据网络...从简单的文件数据库到复杂的网络数据库构成了媒体的异构数据源。...二、异构同源 1、定义 异构同源不强求物理上的集中,而是保持组织数据的分布现状,将各个系统的数据通过接口包装成服务,注册到组织服务总线,通过组织服务总线提供统一的数据服务,从而实现数据在逻辑上的整合。...随着大数据与人工智能技术的应用普及,海量多源异构数据急剧增加,特别是非结构化数据的增加,传统大数据平台在面临多源异构数据处理时,面临数据采集处理能力不足、数据结构难以统一,数据运维困难等挑战,为洞察数据的价值带来了层层阻碍...就汽车零部件生产渠道数据、行驶数据而言可以说这辆汽车的数据是多源异构的。

    4.6K20

    异构数据源同步之数据同步 → datax 改造,有点意思

    服务器模式:这种模式适用于长时间运行的应用程序,如Web服务器或数据库服务器。服务器模式下的JVM会进行更多的优化,以减少长时间运行的性能开销。...当 Runtime 对象调用 exec(cmd) 后,JVM 会启动一个子进程,该进程会与 JVM 进程建立三个管道连接:标准输入,标准输出 和 标准错误流 假设子进程不断在向标准输出流和标准错误流写数据...,而 JVM 进程不读取的话,当缓冲区满之后将无法继续写入数据,最终造成阻塞在 waitfor() 所以改造下就好了 private static final String SYSTEM_ENCODING...小数据量的同步,实现方式往往很多 但大数据量的同步,情况就不一样了,那么此时进程和线程的区别还大吗 Linux 系统基本自带 Python 环境,所以大家不要再纠结为什么依赖 Python 了 去掉

    30610
    领券