首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nat. Commun.| 通过将异质数据集投射到一个共同的细胞嵌入空间进行在线单细胞数据整合

    本文介绍由清华大学生命科学学院生物信息学教育部重点实验室、北京结构生物学高级创新中心和生物结构前沿研究中心、合成与系统生物学研究中心的Qiangfeng Cliff Zhang通讯发表在 Nature Communications 的研究成果:作者提出了SCALEX,一种深度学习方法,通过将细胞投射到一个批次不变的、共同的细胞嵌入空间,以真正的在线方式(即不需要重新训练模型)整合单细胞数据。SCALEX在不同模式的基准单细胞数据集(scRNA-seq,scATAC-seq)上的表现大大优于在线iNMF和其他最先进的非在线整合方法,特别是对于有部分重叠的数据集,在保留真正的生物差异的同时准确地对齐类似细胞群。作者通过构建人类、小鼠和COVID-19患者的可持续扩展的单细胞图谱来展示SCALEX的优势,每个图谱都由不同的数据源组装而成,并随着每个新数据的出现而不断增长。在线数据整合能力和卓越的性能使SCALEX特别适合于大规模的单细胞应用。

    02

    文献解读-多组学-第十八期|《整合 WES 和 RNA-Seq 数据以进行短变异发现》

    组学的整合具有巨大的潜力,可用于变异发现。已经开发了几种算法来以整合方式检测体细胞变异,但仍然没有胚系突变检测的策略。在此基础上,研究者开发了一种通过整合WES和RNA-seq数据来识别胚系突变的策略。这种整合策略从原始序列数据中识别短变异(SNP和插入缺失),将其分为六组以改善变异解释:强证据,仅DNA,仅RNA,等位基因特异性表达(ASE),RNA编辑和RNA挽救变异。研究者基于整合流程分析了四个样本,与仅使用 WES 数据相比,发现已识别变体的数量有所增加,但对性能没有太大影响,从而可以验证由两种类型的数据(强证据变体)识别的变体,并鉴定 RNA 编辑和 ASE。这种整合策略提供了一种从WES和RNA-seq数据中鉴定胚系SNP和插入缺失的方法,充分利用这两种组学可以扩大已识别变异的范围并进行变异验证。

    01

    Cell 深度| 一套普遍适用于各类单细胞测序数据集的锚定整合方案

    自北京大学汤富酬教授(当时为英国剑桥大学格登研究所(Gurdon Institute) Azim Surani实验室博士后)等人于2009年在Nature Methods上发表首个单细胞测序(single cell sequencing)方案以来【1】,这项革命性技术已历经十年的飞速发展;分子生物学、微流控(microfluidics)技术和纳米技术等关联技术的长足进步催生了数十种全新的单细胞测序方案,使测序细胞数目呈现指数级增长 (生信宝典注:指数级增长的转折点是郭国骥老师的工作)(下图)【2】。同时,通过谷歌搜索趋势分析可以发现,对单细胞测序这一词条的相对搜索频率在全球范围内一直呈稳定上升趋势,甚至在2018年超过了同样仅有十余年应用史的重要分子生物学测序方法——染色质免疫共沉淀测序(ChIP-seq)(下图)。

    03

    Cerebral Cortex:疼痛热刺激引起的脑功能网络分离与整合

    目前的研究旨在确定热痛期间大脑网络整合/分离的变化,使用高时间分辨率的网络连接事件优化方法。参与者(n = 33)主动判断施加于前臂掌侧的热刺激是否疼痛,然后在每次试验后评价温暖/疼痛强度。我们表明,试验中整合/分离的时间演化与疼痛的主观评级相关。具体来说,大脑在处理疼痛刺激时从隔离状态转变为整合状态。在所有的网络中,与主观疼痛评分的关联发生在不同的时间点。然而,当在较低的时间分辨率下测量时变功能连接时,评分和整合/分离之间的关联程度消失了。此外,与疼痛相关的整合增强在一定程度上可以通过网络之间连接的相对增加来解释。我们的研究结果强调了在单一时间点尺度上研究疼痛和大脑网络连接之间关系的重要性,因为通常使用的连接数据的时间聚合可能导致网络连接的细尺度变化可能被忽视。整合/分离之间的相互作用反映了大脑网络之间信息处理需求的变化,这种适应既发生在认知任务中,也发生在痛感处理中。

    03

    Cerebral Cortex:注意缺陷多动障碍ADHD多层网络动态重构分析

    注意缺陷多动障碍(ADHD)已被报道存在异常的脑网络拓扑结构。然而,这些研究往往将大脑视为一个静态的整体结构,而忽略了动态特性。在这里,我们研究了ADHD患者的动态网络重构如何不同于健康人群。具体来说,我们从包括40名ADHD患者和50名健康人的公共数据集中获得了静息状态功能性磁共振成像数据。提出了一种时变多层网络模型和招募与整合度量来描述群体差异。结果表明,ADHD患者在各水平上的综合得分均显著低于对照组。除了全脑水平外,招募得分低于健康人。值得注意的是,注意缺陷多动障碍患者的皮层下网络和丘脑在功能网络内部和之间都表现出联盟偏好的降低。此外,我们还发现招募系数和整合系数在部分脑区与症状严重程度存在显著相关性。我们的研究结果表明,ADHD患者在某些功能网络内部或之间的沟通能力受到损害。这些证据为研究ADHD的脑网络特征提供了新的契机。

    04

    单细胞分析十八般武艺1:harmony

    Harmony需要输入低维空间的坐标值(embedding),一般使用PCA的降维结果。Harmony导入PCA的降维数据后,会采用soft k-means clustering算法将细胞聚类。常用的聚类算法仅考虑细胞在低维空间的距离,但是soft clustering算法会考虑我们提供的校正因素。这就好比我们的高考加分制度,小明高考成绩本来达不到A大学的录取分数线,但是他有一项省级竞赛一等奖加10分就够线了。同样的道理,细胞c2距离cluster1有点远,本来不能算作cluster1的一份子;但是c2和cluster1的细胞来自不同的数据集,因为我们期望不同的数据集融合,所以破例让它加入cluster1了。聚类之后先计算每个cluster内各个数据集的细胞的中心点,然后根据这些中心点计算各个cluster的中心点。最后通过算法让cluster内的细胞向中心聚集,实在收敛不了的离群细胞就过滤掉。调整之后的数据重复:聚类—计算cluster中心点—收敛细胞—聚类的过程,不断迭代直至聚类效果趋于稳定。

    09

    Nat. Biotechnol. | 通过迁移学习将单细胞数据映射到参考图谱

    本文介绍由德国慕尼黑工业大学的Fabian J. Theis等人发表于Nature Biotechnology 的研究成果:研究人员报道了一种深度学习策略scArches (single-cell architectural surgery),把查询数据集映射到参考图谱上。scArches不需要原始数据,仅在现有参考图谱上应用迁移学习和参数优化高效分析新数据。利用小鼠大脑、胰腺、免疫和整个有机体图谱例子,作者表明scArches能在去除批次效应的同时保留了生物状态信息。最后,使用scArches把新冠疾病映射到健康图谱上,其保留了COVID-19的疾病变异,从而能够发现疾病特定细胞状态。scArches将通过迭代构建、更新、共享和有效使用参考图谱来促进合作项目。

    02

    任务和静息态下脑网络整合、分离和准周期性激活与去激活

    先前的研究表明,以网络整合和分离的方式表达的大脑功能连接组的重组可能对大脑功能发挥至关重要的作用。然而,已经证明很难在一个单一的方法框架中独立地完全捕捉这两个过程。在这项研究中,通过对瞬时相位同步和社区成员进行成对评估,我们构建了时空灵活的网络,这些网络反映了在空间和时间尺度上发生的整合/分离变化。这是通过迭代地将较小的网络组装成较大的单元来实现的,条件是较小的单元必须内部集成,即属于同一个社区。组装的子网络可以部分重叠,且大小随时间不同而不同。我们的研究结果表明,子网络整合和分离在大脑中同时发生。在任务执行过程中,网络之间同步的全局变化与实验的基础时间设计有关。我们表明,大脑功能连接组动力学的一个标志性特征是网络激活和去激活的准周期性模式的存在,在任务执行过程中,这种模式与实验范式的潜在时间结构交织在一起。此外,我们还证明了在整个n-back工作记忆任务中网络的整合程度与性能相关。

    02
    领券