[PyTorch小试牛刀]实战五·RNN(LSTM)实现逻辑回归对FashionMNIST数据集进行分类(使用GPU)
内容还包括了网络模型参数的保存于加载。...= t.nn.Sequential(
t.nn.LSTM( # LSTM 效果要比 nn.RNN() 好多了
input_size=28,...# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size) LSTM...= self.rnn(x)
#print(cnn1.shape)
r_out, (h_n, h_c) = rnn1
#print(cnn1.shape...): Sequential(
(0): LSTM(28, 256, num_layers=2, batch_first=True)
)
(dnn): Linear(in_features