首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Knowledge-based BERT: 像计算化学家一样提取分子特征的方法

今天介绍一篇浙江大学智能创新药物研究院侯廷军教授团队、中南大学曹东升教授团队和腾讯量子计算实验室联合在Briefings in Bioinformatics发表的一篇论文“Knowledge-based BERT: a method to extract molecular features like computational chemists”。本文提出了一种新的预训练策略,通过学习由计算化学家预定义的分子特征和原子特征,使得模型能够像计算化学家一样从SMILES中提取分子特征。K-BERT在多个成药性数据集上表现了优异的预测能力。此外,由K-BERT 生成的通用指纹 K-BERT-FP 在 15个药物数据集上表现出与 MACCS 相当的预测能力。并且通过进一步预训练,K-BERT-FP还可以学习到传统二进制指纹(如MACCS和ECFP4)无法表征的分子大小和手性信息。

03

J. Chem. Inf. Model. | 增强指纹图注意力网络(FinGAT)模型用于抗生素发现

今天为大家介绍的是来自JunJie Wee和Kelin Xia团队的一篇关于抗生素发现的论文。人工智能(AI)技术在改变抗生素发现行业方面具有巨大潜力。高效和有效的分子特征化是实现高准确性学习用于抗生素发现的模型的关键。作者提出了一种通过结合基于序列的2D指纹和基于结构的图表示的指纹增强的图注意力网络(FinGAT)模型。在特征学习过程中,序列信息转化为指纹向量,结构信息通过GAT模块编码为另一个向量。这两个向量被连接并输入到多层感知机(MLP)进行抗生素活性分类。模型经过广泛的测试并与现有模型进行比较。研究发现, FinGAT在抗生素发现中可以胜过各种最先进的GNN模型。

01

Nat. Methods | MSNovelist:从质谱生成小分子结构的新方法

今天给大家介绍来自苏黎世联邦理工学院和耶拿弗里德里希-席勒-耶拿大学团队发表在Nature Methods上的文章,文章提出了一种基于encoder-decoder神经网络的从质谱生成小分子结构的新方法:MSNovelist,它首先使用SIRIUS和CSI:FingerID来分别从质谱中预测出分子的指纹和表达式,然后将其输入到一个基于encoder-decoder的RNN模型来生成分子的SMILES。作者使用来自Global Natural Product Social Molecular Networking网站上的3863个质谱数据集进行评估,MSNovelist重现出了61%的分子结构,这些重现的分子结构都是未在训练集中见过的;并且使用CASMI2016数据集进行了评估,MSNovelist重现了64%的分子结构。最后,本文将MSNovelist应用在苔藓植物质谱数据集上进行验证,结果表明MSNovelist非常适合在分析物类别和新化合物表现不佳的情况下注释质谱对应的分子。

03

CIKM 2021 | 基于IPCA的多属性分子优化

今天给大家介绍以色列理工学院Kira Radinsky课题组发表在CIKM会议上的一篇文章“Multi-Property Molecular Optimization using an Integrated Poly-Cycle Architecture”。分子先导优化是药物发现的一项重要任务,重点是生成类似于候选药物但具有增强属性的分子。大多数先前的工作都集中在优化单个属性上。然而,在实际环境中,作者希望产生满足多个约束条件的分子,例如,效力和安全性。同时优化这些属性是困难的,主要是由于缺乏满足所有约束的训练样本。作者在文章中提出了一种基于集成多循环架构(IPCA)的多属性分子优化新方法,该架构分别学习每个属性优化的转换,同时限制所有转换之间的潜在嵌入空间,能生成同时优化多个属性的分子。同时,作者提出了一种新的损失函数,它平衡了单独的转换并稳定了优化过程。我们评估了优化两个属性——多巴胺受体(DRD2)和药物相似性(QED)的方法,结果表明基于IPCA的多属性分子优化方法优于之前的先进方法,尤其是当满足所有约束且训练样本稀疏的情况。

02

榕树集--新型抗生素的发现

在本文中研究团队提出了一种基于深度学习的可解释方法,用于发现新型抗生素结构。通过神经网络学到的抗生素活性相关的化学亚结构被用于预测抗生素的结构类别。研究团队通过图神经网络预测了超过1200万个化合物的抗生素活性和毒性,并通过可解释的图算法确定了具有高抗生素活性和低毒性的化合物的亚结构理由。实验验证表明,具有特定亚结构的化合物对金黄色葡萄球菌具有抗生素活性,其中一种结构类别对耐药性较强的金黄色葡萄球菌和肠球菌具有选择性。这一方法为深度学习引导的抗生素结构类别发现提供了新途径,并强调了机器学习在药物发现中的可解释性和对选择性抗生素活性的化学基础的洞察力。

01

J.Cheminform| MACCS密钥:在逆合成预测中弥补SMILES的局限性

今天给大家介绍的是韩国江原国立大学Umit V.等人在2021年发表的一篇名为“Substructure-based neural machine translation for retrosynthetic prediction”的文章。随着机器翻译方法的快速改进,神经网络机器翻译开始在逆合成规划中发挥重要作用。作者利用无模板的序列到序列模型,将逆合成规划问题重新转化为语言翻译问题,不像先前的使用SMILES字符串来表示反应物和产物的模型,作者引入了一种新的基于分子碎片的方法来表示化学反应,并使用古本系数进行结果评估。结果表明,与目前最先进的计算方法相比,该方法能获得更好的预测结果。该方法解决了现有的逆合成方法产生无效SMILES字符串等主要缺陷。具体来说,我们的方法预测高度相似的反应物分子的准确率为57.7%。此外,作者的方法得到了比现有方法更稳健的预测。

01

Brief. Bioinform. | 从直觉到人工智能:药物发现中的小分子表征演变

今天介绍一篇2023年11月发表在《Briefings in Bioinformatics》期刊上的论文,题为“From Intuition to AI: Evolution of Small Molecule Representations in Drug Discovery”,文章的第一作者为英国爱丁堡大学的Miles McGibbon研究员和 Steven Shave研究员,以及中南大学的董界副教授,通讯作者为爱丁堡大学的Vincent Blay博士。该综述总结了药物发现领域中分子表示(表征)的演变历程,从最初的人类可读格式,逐步发展到现代的数字描述符、指纹,以及基于序列和图的学习表示。作者强调了各种表示方法在通用性、计算成本、不可逆性和可解释性等方面的优缺点。文章还讨论了药物发现领域的创新机会,包括为高价值、低数据制度创建分子表示,提炼更广泛的生物和化学知识成为新颖的学习表示,以及对新兴治疗方式进行建模。总体而言,文章聚焦于数字化分子表示在药物研发中的关键作用,同时探讨了所面临的挑战和机遇。

01
领券