,一个面向的是非结构化数据,它们内部的数据结构如下: DataFrame 内部的有明确 Scheme 结构,即列名、列字段类型都是已知的,这带来的好处是可以减少数据读取以及更好地优化执行计划,从而保证查询效率...Scala 和 Java 语言中使用。...上面的描述可能并没有那么直观,下面的给出一个 IDEA 中代码编译的示例: 这里一个可能的疑惑是 DataFrame 明明是有确定的 Scheme 结构 (即列名、列字段类型都是已知的),但是为什么还是无法对列名进行推断和错误判断...DataFrame 的 Untyped 是相对于语言或 API 层面而言,它确实有明确的 Scheme 结构,即列名,列类型都是确定的,但这些信息完全由 Spark 来维护,Spark 只会在运行时检查这些类型和指定类型是否一致...Spark 使用 analyzer(分析器) 基于 catalog(存储的所有表和 DataFrames 的信息) 进行解析。
1、RDD Dataset 和 DataFrame 速览 RDD 和 DataFrame 都是一个可以看成有很多行,每一行有若干列的数据集(姑且先按照记录和字段的概念来理解) 在 scala 中可以这样表示一个...DataFrame 则是一个每列有命名的数据集,类似于关系数据库中的表,读取某一列数据的时候可以通过列名读取。所以相对于 RDD,DataFrame 提供了更详细的数据的结构信息 schema。...Spark SQL's optimized execution engine[1]。通过列名,在处理数据的时候就可以通过列名操作。...最开始的想法是用 scala 的 一些列表类型封装数据,当每个列的类型相同的时候,用数组 如 Array[String],但一般情况下是不同的,就用元组("a", 1, …),但这个方法有个局限,我们以...【6】Spark Scala API
其中有两个额外的列 gender 和 country 作为 partitioning columns (分区列): path └── to └── table ├── gender...它可以通过设置 spark.sql.parquet.mergeSchema 到 true 以重新启用。 字符串在 Python 列的 columns(列)现在支持使用点(.)来限定列或访问嵌套值。...但是,这意味着如果你的列名中包含任何圆点,你现在必须避免使用反引号(如 table.column.with.dots.nested)。 在内存中的列存储分区修剪默认是开启的。...时间戳现在存储在 1 微秒的精度,而不是 1 纳秒的。 在 sql 语句中,floating point(浮点数)现在解析为 decimal。HiveQL 解析保持不变。...该列将始终在 DateFrame 结果中被加入作为新的列,即使现有的列可能存在相同的名称。
可以接入一个外部文件作为mock数据 { "name": "streaming.core.compositor.spark.streaming.source.MockInputStreamFromPathCompositor...", "params": [{ "name": "a" }] } params.name 则是列名,方便后续的sql使用。...", "params": [{"a":"$['store']['book'][0]['title']"}] } 从JSON里抽取字段,映射到新的列名上。...", "params": [{"time":0,"url":1}] } Nginx 日志解析工具,按位置给列进行命名。...", "params": [{ "tableName": "test" }] } 把字符串(JSON格式)的数据注册成一张表。
场景 • 可以添加、删除、修改和移动列(包括嵌套列) • 分区列不能演进 • 不能对 Array 类型的嵌套列进行添加、删除或操作 SparkSQL模式演进以及语法描述 使用模式演进之前,请先设置spark.sql.extensions...: 新列名,强制必须存在,如果在嵌套类型中添加子列,请指定子列的全路径 示例 • 在嵌套类型users struct中添加子列col1,设置字段为users.col1...column_type 新的列类型 col_comment 列comment column_name 列名,放置目标列的新位置。...作为一种解决方法,您可以使该字段为空 向内部结构添加一个新的不可为空的列(最后) No No 将嵌套字段的数据类型从 long 更改为 int No No 将复杂类型的数据类型从 long 更改为...在下面的示例中,我们将添加一个新的字符串字段并将字段的数据类型从 int 更改为 long。
Reference Overview Spark SQL的核心是Catalyst优化器,是以一种新颖的方式利用Scala的的模式匹配和quasiquotes机制来构建的可扩展查询优化器。 ?...parser切词 Spark 1.x版本使用的是Scala原生的Parser Combinator构建词法和语法分析器,而Spark 2.x版本使用的是第三方语法解析器工具ANTLR4。...Spark2.x SQL语句的解析采用的是ANTLR4,ANTLR4根据语法文件SqlBase.g4自动解析生成两个Java类:词法解析器SqlBaseLexer和语法解析器SqlBaseParser。...SqlBaseLexer和SqlBaseParser都是使用ANTLR4自动生成的Java类。使用这两个解析器将SQL字符串语句解析成了ANTLR4的ParseTree语法树结构。...Analyzer会再次遍历整个AST,对树上的每个节点进行数据类型绑定以及函数绑定,比如people词素会根据元数据表信息解析为包含age、id以及name三列的表,people.age会被解析为数据类型为
既然是UDF,它也得保持足够的特殊性,否则就完全与Scala函数泯然众人也。这一特殊性不在于函数的实现,而是思考函数的角度,需要将UDF的参数视为数据表的某个列。...例如上面len函数的参数bookTitle,虽然是一个普通的字符串,但当其代入到Spark SQL的语句中,实参`title`实际上是表中的一个列(可以是列的别名)。...当然,我们也可以在使用UDF时,传入常量而非表的列名。...($"title", lit(10))) 普通的UDF却也存在一个缺陷,就是无法在函数内部支持对表数据的聚合运算。...StructField的名字并没有特别要求,完全可以认为是两个内部结构的列名占位符。
这个底层的探索:只要避免Python UDF,PySpark 程序将大约与基于 Scala 的 Spark 程序一样快。如果无法避免 UDF,至少应该尝试使它们尽可能高效。...利用to_json函数将所有具有复杂数据类型的列转换为JSON字符串。因为Arrow可以轻松处理字符串,所以可以使用pandas_udf装饰器。...数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...除了转换后的数据帧外,它还返回一个带有列名及其转换后的原始数据类型的字典。 complex_dtypes_from_json使用该信息将这些列精确地转换回它们的原始类型。...作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。
Spark SQL现在是不支持将包含了嵌套JavaBean或者List等复杂数据的JavaBean,作为元数据的。只支持一个包含简单数据类型的field的JavaBean。...版本:而Scala由于其具有隐式转换的特性,所以Spark SQL的Scala接口,是支持自动将包含了case class的RDD转换为DataFrame的。...Spark SQL会通过反射读取传递给case class的参数的名称,然后将其作为列名。...与Java不同的是,Spark SQL是支持将包含了嵌套数据结构的case class作为元数据的,比如包含了Array等。...中,对row的使用,比java中的row的使用,更加丰富 // 在scala中,可以用row的getAs()方法,获取指定列名的列 teenagerRDD.map { row => Student(row.getAs
新的DataFrame AP不仅可以大幅度降低普通开发者的学习门槛,同时还支持Scala、Java与Python三种语言。...而中间的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。...(以列(列名,列类型,列值)的形式构成的分布式的数据集,按照列赋予不同的名称) ?...如何构建Row对象:要么是传递value,要么传递Seq,官方实例代码: 方式一:下标获取,从0开始,类似数组下标获取如何获取Row中每个字段的值呢? ? 方式二:指定下标,知道类型 ?...Spark 1.6支持自动生成各种类型的编码器,包括基本类型(例如String,Integer,Long),Scala案例类和Java Bean。
大卸八块 数据框的应用编程接口(API)支持对数据“大卸八块”的方法,包括通过名字或位置“查询”行、列和单元格,过滤行,等等。统计数据通常都是很凌乱复杂同时又有很多缺失或错误的值和超出常规范围的数据。...Spark的惰性求值意味着其执行只能被某种行为被触发。在Spark中,惰性求值在数据转换发生时。 数据框实际上是不可变的。由于不可变,意味着它作为对象一旦被创建其状态就不能被改变。...列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4. 描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。...这个方法会提供我们指定列的统计概要信息,如果没有指定列名,它会提供这个数据框对象的统计信息。 5. 查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6....执行SQL查询 我们还可以直接将SQL查询语句传递给数据框,为此我们需要通过使用registerTempTable方法从数据框上创建一张表,然后再使用sqlContext.sql()来传递SQL查询语句
SparkSQL支持查询原生的RDD。 RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础。 能够在Scala中写SQL语句。...支持简单的SQL语法检查,能够在Scala中写Hive语句访问Hive数据,并将结果取回作为RDD使用。 ...2、Spark on Hive和Hive on Spark Spark on Hive: Hive只作为储存角色,Spark负责sql解析优化,执行。...Hive on Spark:Hive即作为存储又负责sql的解析优化,Spark负责执行。 二、基础概念 1、DataFrame ? DataFrame也是一个分布式数据容器。...,但是要注意列顺序问题---不常用 * 2.可以使用row.getAs("列名")来获取对应的列值。
desc) 降序排列 orderBy/sort($"列1" , $"列2".desc) 按两列排序 例如: df.select($"id",$"name").orderBy($"name..." === $"did").show scala>dept.join(emp,$"deptid" === $"did","left").show 左向外联接的结果集包括 LEFT OUTER子句中指定的左表的所有行...,而不仅仅是联接列所匹配的行。...scala>val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc) scala>hiveContext.sql("create...1、创建工程 打开scala IDE开发环境,创建一个scala工程。 2、导入jar包 导入spark相关依赖jar包。 ? 3、创建类 创建包路径以object类。
中的一个特殊字典,其中每个列名是key,每一列的数据为value(注:这个特殊的字典允许列名重复),该种形式对列名无任何要求。...:Spark中的DataFrame每一列的类型为Column、行为Row,而Pandas中的DataFrame则无论是行还是列,都是一个Series;Spark中DataFrame有列名,但没有行索引,...scala spark构建一个示例DataFrame数据 对于如上DataFrame,仍然提取A列对应的DataFrame子集,常用方法如下: df.select("A"):即直接用select算子+...,这里expr执行了类SQL的功能,可以接受一个该列的表达式执行类SQL计算,例如此处仅用于提取A列,则直接赋予列名作为参数即可; df.selectExpr("A"):对于上述select+expr的组合...,spark.sql中提供了更为简洁的替代形式,即selectExpr,可直接接受类SQL的表达式字符串,自然也可完成单列的提取,相当于是对上一种实现方式的精简形式。
默认情况下,所有这些列的数据类型都被视为字符串。...1.2 读取多个 CSV 文件 使用read.csv()方法还可以读取多个 csv 文件,只需通过逗号分隔作为路径传递所有文件名,例如: df = spark.read.csv("path1,path2...,path3") 1.3 读取目录中的所有 CSV 文件 只需将目录作为csv()方法的路径传递给该方法,我们就可以将目录中的所有 CSV 文件读取到 DataFrame 中。....csv("PyDataStudio/zipcodes.csv") 2.3 Header 此选项用于读取 CSV 文件的第一行作为列名。...默认情况下,此选项的值为 False ,并且所有列类型都假定为字符串。
ResolveAlterTableCommands Resolution fixedPoint 根据alter table column命令的大小写敏感度,主要解析、规范化和重写列名的规则。...这条规则将会:1.按名称写入时对列重新排序;2.数据类型不匹配时插入强制转换;3.列名不匹配时插入别名;4.检测与输出表不兼容的计划并引发AnalysisException ExtractWindowExpressions...这是最后一种手段,以防主解析批处理中的某些规则无法删除TempResolvedColumn。我们应该在主解析批处理之后立即运行此规则。...然后,解析的编码器将用于将internal row反序列化为Scala值。...如果没有这个规则,可以为NULL的列的NULL字段实际上可以设置为non-NULL,这会导致非法优化(例如NULL传播)和错误答案。
本篇作为【SparkSQL编程】系列的第二篇博客,为大家介绍的是DataSet概念入门以及与DataFrame的互操作。 码字不易,先赞后看,养成习惯! ? ---- 3....table的结构,case类属性通过反射变成了表的列名。...DataFrame scala> val df = spark.read.json("/input/people.json") df: org.apache.spark.sql.DataFrame =...3)转换 val testDS = testDF.as[Coltest] 这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便...在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。
命令行 Row 表示每行数据,如何获取各个列的值 RDD如何转换为DataFrame - 反射推断 - 自定义Schema 调用toDF函数,创建DataFrame 2、数据分析(案例讲解...2、Spark 1.0开始提出SparkSQL模块 重新编写引擎Catalyst,将SQL解析为优化逻辑计划Logical Plan 此时数据结构:SchemaRDD 测试开发版本,不能用于生产环境...DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。...要么是传递value,要么传递Seq 07-[掌握]-RDD转换DataFrame之反射类型推断 实际项目开发中,往往需要将RDD数据集转换为DataFrame,本质上就是给RDD加上Schema...} 09-[掌握]-toDF函数指定列名称转换为DataFrame SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用
02 Pandas和Spark实现SQL对应操作 以下按照SQL执行顺序讲解SQL各关键字在Pandas和Spark中的实现,其中Pandas是Python中的数据分析工具包,而Spark作为集Java...、Scala、Python和R四种语言的通用分布式计算框架,本文默认以Scala语言进行讲述。...由于Python和Scala均为面向对象设计语言,所以Pandas和Spark中无需from,执行df.xxx操作的过程本身就蕴含着from的含义。 2)join on。...但在具体使用中,where也支持两种语法形式,一种是以字符串形式传入一个类SQL的条件表达式,类似于Pandas中query;另一种是显示的以各列对象执行逻辑判断,得到一组布尔结果,类似于Pandas中...纵向拼接,要求列名对齐,而append则相当于一个精简的concat实现,与Python中列表的append方法类似,用于在一个DataFrame尾部追加另一个DataFrame; Spark:Spark
并不知道每行Row数据有多少列,弱类型 案例演示,spark-shell命令行 Row 表示每行数据,如何获取各个列的值 RDD如何转换为DataFrame - 反射推断 - 自定义Schema...2、Spark 1.0开始提出SparkSQL模块 重新编写引擎Catalyst,将SQL解析为优化逻辑计划Logical Plan 此时数据结构:SchemaRDD 测试开发版本,不能用于生产环境...DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。...要么是传递value,要么传递Seq 07-[掌握]-RDD转换DataFrame之反射类型推断 实际项目开发中,往往需要将RDD数据集转换为DataFrame,本质上就是给RDD加上Schema...} 09-[掌握]-toDF函数指定列名称转换为DataFrame SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用