首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python pandas十分钟教程

    也就是说,500意味着在调用数据帧时最多可以显示500列。 默认值仅为50。此外,如果想要扩展输显示的行数。...探索DataFrame 以下是查看数据信息的5个最常用的函数: df.head():默认返回数据集的前5行,可以在括号中更改返回的行数。 示例: df.head(10)将返回10行。....unique():返回'Depth'列中的唯一值 df.columns:返回所有列的名称 选择数据 列选择:如果只想选择一列,可以使用df['Group']....下面的代码将平方根应用于“Cond”列中的所有值。 df['Cond'].apply(np.sqrt) 数据分组 有时我们需要将数据分组来更好地观察数据间的差异。...df.groupby(by=['Contour', 'Gp'])['Ca'].mean() 合并多个DataFrame 将两个数据合并在一起有两种方法,即concat和merge。

    9.8K50

    Pandas常用操作

    步骤代码如下: 1.构建文件列表和要读取的文件列名称 import os import pandas as pd file_dir = r'D:\公众号\Pandas基本操作' #设置工作空间,默认读取的就是这个文件夹下的文件...= use_cols) #读取指定列的数据 #将两个DataFrame进行拼接,axis = 0表示在行方向拼接,ignore_index可以忽略两个DataFrame的索引 df =...,index参数可以忽略索引输出 print(df) 结果如图所示,一共98万余条数据,输出时电脑已卡死 : 二、按照条件删除若干行 以2015年数据为例,列‘pm2_5'表示一年中各个站点的...= df['new_id'].fillna('-1') df['new_id'] = new_col 方法一利用pd.isnull判断某一列中为NaN的行,利用.index得到行索引。...再利用df.loc对满足条件的列赋值。 方法二利用.fillna对某一列的NaN赋值为-1,得到的为Series对象。再利用列赋值语句将原来的列覆盖。

    1.4K10

    如何将Pandas数据转换为Excel文件

    将数据导出到Excel文件通常是任何用户阅读和解释一组数据的最优先和最方便的方式。...pip install openpyxl 复制代码 你可以在不提及任何工作表名称的情况下将DataFrame写入Excel文件。下面给出了一步一步的过程。...使用pandas包的ExcelWriter()方法创建一个Excel写作对象。 输入输出的Excel文件的名称,你想把我们的DataFrame写到该文件的扩展名中。...') 复制代码 在DataFrame上调用to_excel()函数,将Excel Writer作为参数传递,将你的数据导出到已经给定名称和扩展名的Excel文件。...提示 你不仅仅局限于控制excel文件的名称,而是将python数据框架导出到Excel文件中,而且在pandas包中还有很多可供定制的功能。

    7.6K10

    pandas 入门 1 :数据集的创建和绘制

    我们基本上完成了数据集的创建。现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...此时的名称列无关紧要,因为它很可能只是由字母数字字符串(婴儿名称)组成。本专栏中可能存在不良数据,但在此分析时我们不会担心这一点。在出生栏应该只包含代表出生在一个特定年份具有特定名称的婴儿数目的整数。...我们可以检查所有数据是否都是数据类型整数。将此列的数据类型设置为float是没有意义的。在此分析中,我不担心任何可能的异常值。...['Births'].max()] 等于选择Names列WHERE [Births列等于973]中的所有记录 另一种方法可能是使用Sorted dataframe: Sorted ['Names'].

    6.1K10

    pandas 入门2 :读取txt文件以及描述性分析

    使用zip函数合并名称和出生数据集。 ? 我们基本上完成了创建数据集。我们现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...您可以将此对象视为以类似于sql表或excel电子表格的格式保存BabyDataSet的内容。让我们来看看 df里面的内容。 ? 将数据框导出到文本文件。...如果我们想给列特定的名称,我们将不得不传递另一个名为name的参数。我们也可以省略header参数。 ? 您可以将数字[0,1,2,3,4,...]视为Excel文件中的行号。...在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...[Names,Births]可以作为列标题,类似于Excel电子表格或sql数据库中的列标题。 ? 准备数据 数据包括1880年的婴儿姓名和出生人数。

    2.8K30

    Python数据分析的数据导入和导出

    squeeze(可选,默认为False):用于指定是否将只有一列的数据读取为Series对象而不是DataFrame对象。 prefix(可选,默认为None):用于给列名添加前缀。...函数是pandas库中的一个方法,用于将DataFrame对象保存为CSV文件。...xlsx格式数据输出 to_excel to_excel函数是pandas库中的一个方法,用于将DataFrame对象保存到Excel文件中。...sheet_name:要保存到的Sheet的名称,默认为’Sheet1’。 index:是否保存索引列,默认为True。 header:是否保存列名,默认为True。...示例2 【例】将sales.xlsx文件中的前十行数据,导出到sales_new.xlsx文件中名为df1的sheet页中,将sales.xlsx文件中的后五行数据导出到sales_new.xlsx文件中名为

    26510

    猫头虎 分享:Python库 Pandas 的简介、安装、用法详解入门教程

    在这篇博客中,猫头虎 将详细介绍 Pandas 的核心功能,从库的简介,到安装步骤,再到具体的用法及实际应用。对于数据分析师和开发者,或是任何对数据处理感兴趣的读者,这篇文章都将提供宝贵的参考。...Pandas 的主要数据结构包括: Series:一维数组,类似于Python中的列表或Numpy中的一维数组。 DataFrame:二维表格数据结构,类似于电子表格或SQL表。...result = pd.merge(df1, df2, on='key_column', how='inner') 检查匹配的键是否一致:合并前确保键列的名称和数据类型一致。...将数据存储在数据库中,通过 SQL 查询进行分步操作。 利用 HDF5 格式存储数据,以提高读取效率。 Q: Pandas 可以处理哪些数据类型?...(inplace=True) 数据合并 按指定列合并两个 DataFrame pd.merge(df1, df2, on='key') 本文总结与未来趋势 Pandas 是 Python 生态系统中无可替代的数据分析工具

    25310

    python数据分析——数据分析的数据的导入和导出

    这两种格式的文件都可以用Python的Pandas模块的read_excel方法导入。read_excel方法返回的结果是DataFrame, DataFrame的一列对应着Excel的一列。...columns:指定要输出的列,用列名,列表表示,默认值为None。 header:是否输出列名,默认值为True。 index:是否输出索引,默认值为True。...对于Pandas库中的to_excel()方法,有下列参数说明: sheet_name:字符串,默认值为"Sheet1",指包含DataFrame数据的表的名称。...指缺失数据的表示方式。 columes:序列,可选参数,要编辑的列。 header:布尔型或字符串列表,默认值为True。如果给定字符串列表,则表示它是列名称的别名。...2.3导入到多个sheet页中 【例】将sales.xlsx文件中的前十行数据,导出到sales_new.xlsx文件中名为df1的sheet页中,将sales.xlsx文件中的后五行数据导出到sales_new.xlsx

    18710

    Python按要求提取多个txt文本的数据

    本文介绍基于Python语言,遍历文件夹并从中找到文件名称符合我们需求的多个.txt格式文本文件,并从上述每一个文本文件中,找到我们需要的指定数据,最后得到所有文本文件中我们需要的数据的合集的方法。...此外,前面也提到,文件名中含有Point字段的文本文件是有多个的;因此希望将所有文本文件中,符合要求的数据行都保存在一个变量,且保存的时候也将文件名称保存下来,从而知道保存的每一行数据,具体是来自于哪一个文件...然后,我们创建一个空的DataFrame对象result_all_df,用于存储所有处理后的结果。   再接下来,通过使用os.listdir()函数,我们遍历指定文件夹中的文件。...然后,我们根据给定的目标波长列表target_wavelength,使用条件筛选出包含目标波长的数据行,并将文件名插入到选定的DataFrame中,即在第一列插入名为file_name的列——这一列用于保存我们的文件名...然后,我们使用pd.DataFrame()函数将展平的数组转换为DataFrame对象;紧接着,我们使用pd.concat()函数将原本的第一行数据,和展平后的数据按列合并(也就是放在了第一行的右侧),

    32810

    Python按要求提取多个txt文本的数据

    本文介绍基于Python语言,遍历文件夹并从中找到文件名称符合我们需求的多个.txt格式文本文件,并从上述每一个文本文件中,找到我们需要的指定数据,最后得到所有文本文件中我们需要的数据的合集的方法。...此外,前面也提到,文件名中含有Point字段的文本文件是有多个的;因此希望将所有文本文件中,符合要求的数据行都保存在一个变量,且保存的时候也将文件名称保存下来,从而知道保存的每一行数据,具体是来自于哪一个文件...然后,我们创建一个空的DataFrame对象result_all_df,用于存储所有处理后的结果。   再接下来,通过使用os.listdir()函数,我们遍历指定文件夹中的文件。...然后,我们根据给定的目标波长列表target_wavelength,使用条件筛选出包含目标波长的数据行,并将文件名插入到选定的DataFrame中,即在第一列插入名为file_name的列——这一列用于保存我们的文件名...然后,我们使用pd.DataFrame()函数将展平的数组转换为DataFrame对象;紧接着,我们使用pd.concat()函数将原本的第一行数据,和展平后的数据按列合并(也就是放在了第一行的右侧),

    26110

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    请按照以下链接下载数据,并将其放在与存储Python文件的同一文件夹中。...2、一些重要的Pandas read_excel选项 ? 如果默认使用本地文件的路径,用“\”表示,接受用“/”表示,更改斜杠可以将文件添加到Python文件所在的文件夹中。...5、略过行和列 默认的read_excel参数假定第一行是列表名称,会自动合并为DataFrame中的列标签。...使用skiprows和header之类的函数,我们可以操纵导入的DataFrame的行为。 ? 6、导入特定列 使用usecols参数,可以指定是否在DataFrame中导入特定的列。 ?...简单的数据透视表,显示SepalWidth的总和,行列中的SepalLength和列标签中的名称。 现在让我们试着复杂化一些: ? 用fill_value参数将空白替换为0: ?

    8.4K30

    Spark的Ml pipeline

    一 重要概念 1.1 管道中的主要概念 MLlib对机器学习算法的API进行了标准化,使得将多种算法合并成一个pipeline或工作流变得更加容易。...通常情况下,转换器实现了一个transform方法,该方法通过给Dataframe添加一个或者多个列来将一个DataFrame转化为另一个Dataframe。...例如:一个特征转换器可以获取一个dataframe,读取一列(例如,text),然后将其映射成一个新的列(例如,特征向量)并且会输出一个新的dataframe,该dataframe追加了那个转换生成的列...HashingTF.transform()方法将单词列转化为特征向量,给dataframe增加一个带有特征向量的列。...在ParamMap中的任何参数将覆盖以前通过setter方法指定的参数。参数属于Estimators和Transformers的特定实例。

    2.6K90

    在pandas中利用hdf5高效存储数据

    其文件后缀名为h5,存储读取速度非常快,且可在文件内部按照明确的层次存储数据,同一个HDF5可以看做一个高度整合的文件夹,其内部可存放不同类型的数据。...在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向...图1 2 利用pandas操纵HDF5文件 2.1 写出文件 pandas中的HDFStore()用于生成管理HDF5文件IO操作的对象,其主要参数如下: ❝「path」:字符型输入,用于指定h5文件的名称...还可以从pandas中的数据结构直接导出到本地h5文件中: #创建新的数据框 df_ = pd.DataFrame(np.random.randn(5,5)) #导出到已存在的h5文件中,这里需要指定key...第二种读入h5格式文件中数据的方法是pandas中的read_hdf(),其主要参数如下: ❝「path_or_buf」:传入指定h5文件的名称 「key」:要提取数据的键 ❞ 需要注意的是利用read_hdf

    2.9K30

    R基础

    输入输出调节 将写好的R脚本运行会在命令行中调用source()函数运行脚本,并将结果输出到命令行中。...如果想要将结果输出到文件中,可以使用sink("filename")函数,将输出重定向到其它地方,也可以通过调整参数来控制输出的格式和保存的方式,当将所有需要输出的结果保存完成后,可以在命令行中输入sink...图像的输出结果可以通过png()函数来控制,png("filename")将图像输出到文件中,使用dev.off()函数来关闭输出。类似的还有jpeg(),bmp(),pdf()等函数。...,因为DataFrame是有列名的,所以还可以通过列名来进行索引,这种索引方式与python中的DataFrame索引有一些区别: 传入单个索引默认是对列的索引如data[1]将取出第一列的数据。...DataFrame类型的数据每次通过data$colname的方式来访问会相对比较麻烦,因此可以使用attach()函数将DataFrame附加到attached namespaces中(adds the

    86520

    在pandas中利用hdf5高效存储数据

    其文件后缀名为h5,存储读取速度非常快,且可在文件内部按照明确的层次存储数据,同一个HDF5可以看做一个高度整合的文件夹,其内部可存放不同类型的数据。...在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向...h5文件中: #创建新的数据框 df_ = pd.DataFrame(np.random.randn(5,5)) #导出到已存在的h5文件中,这里需要指定key df_.to_hdf(path_or_buf...第二种读入h5格式文件中数据的方法是pandas中的read_hdf(),其主要参数如下: ❝「path_or_buf」:传入指定h5文件的名称 「key」:要提取数据的键 ❞ 需要注意的是利用read_hdf...('store.h5') #生成一个1亿行,5列的标准正态分布随机数表 df = pd.DataFrame(np.random.rand(100000000,5)) start1 = time.clock

    5.4K20

    Python随机抽取多个Excel的数据从而整合为一个新文件

    其中,每一个Excel表格文件都有着如下图所示的数据格式;其中的第1行表示每一列的名称,第1列则表示时间。   ...我们希望实现的,就是从每一个Excel表格文件中,随机选取10行数据(第1行数据肯定不能被选进去,因为其为列名;第1列数据也不希望被选进去,因为这个是表示时间的数据,我们后期不需要),并将这一文件夹中全部的...然后,创建了一个空的DataFrame,用于存储抽样后的数据。   接下来是一个for循环,遍历了原始数据文件夹中的所有.csv文件,如果文件名以.csv结尾,则读取该文件。...最后,使用Pandas中的concat()函数将抽样后的数据添加到结果DataFrame中。   ...最后,使用Pandas中的to_csv()函数将结果DataFrame保存到结果数据文件夹中,文件名为Train_Model_1.csv,并设置index = False表示不保存索引。

    24210
    领券