首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

算法与数据结构(五) 普利姆与克鲁斯卡尔的最小生成树(Swift版)

上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索。本篇博客就在上一篇博客的基础上进行延伸,也是关于图的。今天博客中主要介绍两种算法,都是关于最小生成树的,一种是Prim算法,另一个是Kruskal算法。这两种算法是很经典的,也是图中比较重要的算法了。 今天博客会先聊一聊Prim算法是如何生成最小生成树的,然后给出具体步骤的示例图,最后给出具体的代码实现,并进行测试。当然Kruskal算法也是会给出具体的示例图,然后给出具体的代码和测试用例。当然本篇博客中

07

数据结构 第17讲 沟通无限校园网——最小生成树(kruskal算法)

构造最小生成树还有一种算法,Kruskal算法:设G=(V,E)是无向连通带权图,V={1,2,…,n};设最小生成树T=(V,TE),该树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),Kruskal算法将这n个顶点看成是n个孤立的连通分支。它首先将所有的边按权值从小到大排序,然后只要T中选中的边数不到n−1,就做如下的贪心选择:在边集E中选取权值最小的边(i,j),如果将边(i,j)加入集合TE中不产生回路(圈),则将边(i,j)加入边集TE中,即用边(i,j)将这两个连通分支合并连接成一个连通分支;否则继续选择下一条最短边。把边(i,j)从集合E中删去。继续上面的贪心选择,直到T中所有顶点都在同一个连通分支上为止。此时,选取到的n−1条边恰好构成G的一棵最小生成树T。

02

生成树和最小生成树prim,kruskal

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。 中文名 普里姆算法 外文名 Prim Algorithm 别 称 最小生成树算法 提出者 沃伊捷赫·亚尔尼克(Vojtěch Jarník) 提出时间 1930年 应用学科 计算机,数据结构,数学(图论) 适用领域范围 应用图论知识的实际问题 算 法 贪心 目录 1 算法描述 2 时间复杂度 3 图例描述 4 代码 ▪ PASCAL代码 ▪ c代码 ▪ C++代码 5 时间复杂度 算法描述编辑 1).输入:一个加权连通图,其中顶点集合为V,边集合为E; 2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空; 3).重复下列操作,直到Vnew = V: a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一); b.将v加入集合Vnew中,将边加入集合Enew中; 4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

02

PCL—低层次视觉—点云分割(最小割算法)

在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法。基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出来)。基于欧式算法的点云分割面对有牵连的点云就无力了(比如风筝和人,在不用三维形态学去掉中间的线之前,是无法分割风筝和人的)。基于法线等信息的区域生长算法则对平面更有效,没法靠它来分割桌上的碗和杯子。也就是说,上述算法更关注能不能分割,除此之外,我们还需要一个方法来解决分割的“好不好”这个问题。也就是说,有没有哪种方法,可以在一个点不多,一个点不少的情况下,把目标和“其他”分开。

03

学习July博文总结——支持向量机(SVM)的深入理解(下)

接上篇博文《学习July博文总结——支持向量机(SVM)的深入理解(上) 》; 三、证明SVM 凡是涉及到要证明的内容和理论,一般都不是怎么好惹的东西。绝大部分时候,看懂一个东西不难,但证明一个东西则需要点数学功底;进一步,证明一个东西也不是特别难,难的是从零开始发明创造这个东西的时候,则显艰难。因为任何时代,大部分人的研究所得都不过是基于前人的研究成果,前人所做的是开创性工作,而这往往是最艰难最有价值的,他们被称为真正的先驱。牛顿也曾说过,他不过是站在巨人的肩上。你,我则更是如此。正如陈希孺院士在他的著作

09
领券