首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环

squares = (x**2 for x in range(1000000))这行代码创建了一个生成器,可以逐个产生一百万个数的平方,但这些平方并不会同时存在内存中。...NumPy 向量化操作跳进数据科学的大门,怎能不提 NumPy 的向量化操作?在处理数值数据时,这技能简直是利器。基本概念向量化操作指的是直接对数组进行操作,而不是逐个元素进行。...这种方法利用了 NumPy 的内部优化,能显著提升计算速度。用 NumPy 来说,就是把那些通常需要在循环中逐个处理的任务,转换为整体操作,让整个数组一次性处理。...基本概念Pandas 向量化操作主要是指对 DataFrame 或 Series 对象进行的操作,这些操作不需要显式的循环。...性能优化的注意事项在进行性能优化时,别忘了测试和验证你的选择是否真的提升了性能。有时候,一些看似高效的方法(如并行处理)可能因为引入的额外开销而未必带来预期的性能提升。

13100

【提升计算效率】向量化人工智能算法的策略与实现

向量化是提高人工智能算法计算效率的关键技术之一。通过将操作应用于向量或矩阵,而不是逐个元素处理,向量化可以显著加速计算过程。...传统的标量运算逐个处理数据元素,而向量化则一次处理多个数据元素,从而利用现代处理器的并行计算能力。向量化可以显著减少计算时间,尤其是在处理大规模数据时。...向量化在神经网络中的应用 在深度学习中,神经网络的前向传播和反向传播过程涉及大量的矩阵运算。向量化可以加速这些运算,从而提升训练效率。...向量化的实践建议 利用高效的数学库:使用NumPy、TensorFlow、PyTorch等库,这些库内部实现了高度优化的向量化操作。 避免显式循环:尽量使用向量化操作代替显式的循环,减少计算时间。...内存占用优化 向量化操作可能会导致内存占用增加,特别是在处理大规模数据时。

19810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    向量化操作简介和Pandas、Numpy示例

    在本文中,我们将探讨什么是向量化,以及它如何简化数据分析任务。 什么是向量化? 向量化是将操作应用于整个数组或数据系列的过程,而不是逐个遍历每个元素。...在Pandas中可以对整个列或Series执行操作,而无需编写显式循环。这种高效的方法利用了底层优化的库,使您的代码更快、更简洁。...向量化的好处 在Pandas中向量化提供了几个好处: 效率:操作针对性能进行了优化,并且比传统的基于循环的操作快得多,特别是在大型数据集上。...向量化加速代码的原理 向量化为加快代码速度提供了几个优势: 减少循环开销:在传统循环中,存在与管理循环索引和检查循环条件相关的开销。通过向量化,可以消除这些开销,因为这些操作应用于整个数组。...优化的低级指令:像NumPy这样的库使用优化的低级指令(例如,现代cpu上的SIMD指令)来对数组执行操作,充分利用硬件功能。这可以显著提高速度。

    87220

    【AI系统】指令和存储优化

    除了应用极广的循环优化,在 AI 编译器底层还存在指令和存储这两种不同优化。指令优化指令优化依赖于硬件提供的特殊加速计算指令。这些指令,如向量化和张量化,能够显著提高计算密度和执行效率。...向量化在之前的循环优化中,已经介绍过了向量化的原理,它是一种数据级并行的优化。...其硬件实现如下图所示,将多个连续存储的数据批量加载进向量寄存器中,对整个向量寄存器进行操作,从而同时对多个数据元素进行了计算。假设两个整数的数组 A 和 B 计算元素和....在神经网络的内部计算过程中,特征图和参与计算的权重(如卷积核)也以类似的 4 维张量形式存在。传统的计算方法,如使用多层循环嵌套逐个计算数据元素,对于神经网络模型而言,效率极其低下。...利用这些张量指令的一种常见方法是通过调用硬件厂商提供的算子库,如英伟达的 cuBLAS 和 cuDNN,以及英特尔的 oneDNN 等。

    11910

    99行代码实现冰雪奇缘特效的「太极」再进化,胡渊鸣团队、快手等联合打造

    基于粒子的表示是其中常用的方法。场景越大,粒子就越多。比如,要模拟一个 300 米长的溃坝场景中的水,可能会需要数千万粒子,而这些粒子的存储需要大量显存。...位数组向量化 考虑以下情形: 虽然该研究中的系统可以很容易地提高存储效率,但是这种按位 for 循环的计算效率很低,原因有两个。...为此,研究者实现了以下三种优化方法:按位进行循环向量化;带有偏移量的位向量化读取;位向量化的整数加法。...对位数组加载、存储并对算法进行矢量化,以便每次迭代都处理一个完整的 32 x u1 位数组,而不是单个的 u1。 实验结果 「生命游戏」测试 研究者首先在「生命游戏」上测试了他们的系统。...下图分别是量化方案和模拟结果: ‍由于 iPhone 的 GPU 对整型运算增加了额外的优化和加速,因此研究者还在移动设备(iPhoneXS)上测试了量化后的 MLS-MPM 的表现。

    66110

    Matlab系列之程序优化

    一般来说,实现同样的功能,可以采用不同的编程方法,而这些不同的编程方法也可能有着不同的运行速度,因此很多时候需要找到较优的那种方法,从而提高代码的运行效率,本篇将要记录的是一些提供M文件执行速度、优化内存管理的常用方法...,具体的记录两个很实用的方法,然后简单再说下其他的方法,在平常编程的时候注意并学会使用这些方法,请往下慢慢看 ~Show Time~ 第一种 不知道你们在使用MATLAB进行循环计算的时候,有没有感觉到过...类推,在for循环和while循环中,一个数组的大小随着循环不断的增加,很显然这会影响内存的使用效率,因为只要数组的维度变了,就要找到更大的连续内存区域,用于存放新的数组,就像是那个做事的人在不断尝试不同的方法去实现要做的事...预分配内存的方法,本处代码使用的是zeros函数,将x的所有元素都赋值为0,这样节约了重新分配内存的时间,从而提高程序的效率,除了这个函数以外,还有cell函数也可以,不过这两个分别用于对数值数组和单元数组进行内存分配...其他方法 这部分的方法都是比较好理解的,在平常编程前,记住这些要点,然后编写的时候应用上,可以简单有效的对程序进行优化。

    71720

    【ADAS】万字文告诉你Transformer在BEV、3D检测、2D检测、Lane检测的应用,量化与加速

    自注意力机制允许网络关注图像中的相关Patch,而忽略不相关的Patch。 为了使ViT适用于更大的图像,作者引入了一种混合方法,将卷积层与自注意力层相结合。...SurroundOcc从多视图和多尺度2D图像特征中执行3D BEV特征查询,向Transformer层添加3D卷积,并逐步对Voxel特征进行上采样。...因此,Transformer的交叉注意力机制可以根据这些要求,针对不同的应用进行灵活设计和优化。...该方法需要3个循环并存储 N+1 个中间结果。为了进一步优化过程,将全局最大值替换为局部最大值,使计算能够在2个循环中完成。这将时间复杂性降低到 2O(n) ,并减少了中间结果的存储。...高位量化确保了高精度,但需要更大的内存使用量和计算资源,而低位量化提供了较低的精度,但减少了内存和计算需求。

    2.2K30

    AffineQuant: 大语言模型的仿射变换量化

    这些贡献不仅推动了量化技术的发展,使得大型语言模型能够在计算资源受限的环境下部署,还提供了一种新的优化算法,有效地扩展了模型在边缘设备上的应用范围,同时提升了模型在低比特配置下的精度和效率。...方法 3.1 AffineQuant AffineQuant 是一种利用仿射变换来优化后训练量化(PTQ)的方法,它在大型语言模型(LLMs)中应用,以减少量化误差并保持模型性能。...从实验结果可以看出,使用双精度(double)和单精度(float)方案相比于半精度(FP16)会显著增加内存使用和运行时间。...整体而言,这些实验结果揭示了在降低模型精度和优化计算资源使用的过程中存在的权衡和挑战。尽管降低精度可以减少内存使用和加快运行时间,但这往往以牺牲模型的准确性和稳定性为代价。...在使用逐渐mask的情况下,WikiText2和C4的PPL分别为 9.53 和 14.89 ,而未使用时数据未给出,但可以推测其PPL可能会显著高于使用mask的情况。

    35910

    R语言里面如何高效编程

    这是因为R是一种基于向量的语言,其内部函数和操作都是为向量运算设计的。当你使用向量化操作时,R可以一次性处理整个向量,而不是逐个处理向量中的元素,这大大提高了计算效率。...例如,如果你在一个循环中反复向一个向量添加元素,那么每次添加元素时,R都会创建一个新的向量,复制旧向量的内容,并添加新元素。这会导致大量的计算时间被浪费在复制数据上,而不是在实际的数据处理上。...这种预先分配空间的策略可以显著提高R的性能,特别是在处理大型数据结构时。 假设我们想要创建一个包含1到1000000的向量。 一种方法是开始时创建一个空向量,然后在循环中逐个添加元素。...这是因为在第一种方法中,每次循环时R都需要创建一个新的向量并复制旧向量的内容,这在计算上是非常昂贵的。...而在第二种方法中,向量的大小在循环开始前就已经确定,所以R可以更有效地管理内存,从而提高计算速度。 R语言里面如何并行处理独立的任务 在R中,你可以使用多种方式进行并行处理。

    27040

    HLO:通过 Hadamard 低秩量化快速高效地反向传播,解决了大型多模态模型在理解长视频时所面临的调整!

    随着模型规模的迅速增加以及各种微调应用的重要性日益增加,轻量级训练变得至关重要。由于反向传播的代价是前向传播的两倍,因此优化反向传播尤为重要。...这种组合被发现在最大化收益方面效果最佳,作者的大量实验证明了HLQ在从头开始训练和微调中的卓越性能,在真实GPU上实现了显著的内存节省和加速,而质量下降可以忽略不计。...通过设计一个具有最小扰动的有效BP Pipeline ,作者可以在显著降低训练开销的同时,保持训练模型的质量。 在这项研究中,作者提出了一种名为哈达玛低秩量化(HLQ)的新型高效训练方案。...块对角变换可以看作是一种局部变换,其中数据的维边被 Reshape 为,并在的一侧独立应用HT。这种变换因在真实GPU上的效率而受到青睐,作者也采用了这种方法。...最近,HT因其能够在几乎不增加额外计算成本的情况下补偿优化技术引起的质量损失的能力而受到广泛关注,这种好处适用于量化和低秩近似。

    20110

    Python NumPy迭代器协议与高效遍历

    为此,NumPy 提供了更高效的迭代工具,如nditer和ndenumerate,通过优化底层操作,显著提升了遍历性能。此外,了解 NumPy 的迭代器协议还可以更灵活地处理多维数组。...但在以下场景中,高效遍历显得尤为重要: 大规模数组操作:直接使用 Python 循环遍历大规模 NumPy 数组效率低下。 多维数组处理:高维数据的逐元素操作需要更灵活的迭代工具。...内存优化:高效迭代可以减少不必要的数据复制和内存占用。 NumPy 的迭代工具通过底层优化,不仅能提升性能,还提供了灵活的操作方式,适合处理复杂的数据处理任务。...print(row) 输出: [1 2 3] [4 5 6] 需要注意,这种方法无法直接访问元素级别的数据,需结合嵌套循环或高级迭代工具。...性能优化技巧 避免冗余操作 在迭代中,避免对数组元素进行重复计算: # 示例:计算每个元素的平方 result = np.array([x ** 2 for x in arr.flat]) 尽量将计算逻辑向量化

    12610

    Python科学计算学习之高级数组(二)

    代码性能和向量化 背景:Python是一种解释型的编程语言,基本的python代码不需要任何中间编译过程来得到机器代码,而是直接执行。...举例来说,执行 x = 1234+5678 ,对编译型语言,是从内存读入两个short int到寄存器,然后读入加法指令,通知CPU内部的加法器动作,最后把加法器输出存储到x对应的内存单元(实质上,最后这个动作几乎总会被自动优化为...向量化:      为提升代码的性能(运行时间),通常需要将代码向量化。使Numpy包的切片、运算符和函数来替代代码中的for循环以及运行速度较慢的代码片段,可以显著提高代码的性能。...规则:尽可能避免使用for循环而采用向量化形式,善用python的numpy库中的内置函数。例如:np.exp ,np.log ,np.maxmum(v,0) 等。...Python广播      当两个数组中每个元素都进行相应的运算的时候,需要两个数组的形状相同,如果形状不同,则使Python的广播机制进行处理。

    1.1K20

    【AI系统】QNNPack 算法

    “消除所有非计算必需的内存转换”即为间接卷积算法的核心特定,这样的特性同样也注定了它在非量化任务中同样能起到显著的优化作用。...进一步地,上图左上部分的输入缓冲区排列方式并不是最终排布方法,实际上这些指针会被处理成上图中部间接缓冲区的形式。...这是因为间接 GEMM 方法可以更好地利用缓存,而传统 GEMM 方法则需要从 Im2Col 缓冲区的不同位置读取数据,增加了缓存未命中率。 指针加载的开销。...间接缓冲区引入了缓冲区指针,需要从间接缓冲区加载输入数据行的指针,这比在常量步幅假设下直接计算这些指针略微增加了开销。 循环效率的差异。...单循环通常能更好地利用处理器的流水线和指令缓存,从而提高执行效率。 总体来说,间接卷积优化算法解决了卷积计算的三个问题,一是空间向量化问题,二是地址计算复杂问题,三是内存拷贝问题。

    5810

    荣登Nature,时隔15年NumPy论文终发表!

    这些方法和操作一起为数组提供了易读、表达性强的高级 API,同时还可以通过底层来保证快速的运算。 ? 对数组进行索引和切片可以返回满足特定条件的单个元素、子数组等。数组甚至可以使用其他数组进行索引。...检索子数组的索引将返回原始数组的“视图” ,这样两个数组之间就可以共享数据,这为在限制内存使用的同时对数组数据的子集进行操作提供了一种强大的方法。...为了补充数组语法,NumPy 对数组执行向量化计算的函数,包括算术、统计和三角图形学等。「矢量化」、「在整个数组而不是单个元素上操作」对于数组编程来说是必不可少的。...这将产生简洁的代码,使得用户专注于他们分析的细节,同时NumPy还以近乎最优的方式处理数组元素循环。 在具有相同形状的两个数组上执行向量化操作时,应该发生什么是显而易见的。...数组激增和互操作性 NumPy 在 CPU上提供内存中的多维均匀类型的数组。它可以在从嵌入式设备到世界上最大的超级计算机上运行,其性能接近编译语言。

    1.5K20

    Numpy 简介

    更改ndarray的大小将创建一个新数组并删除原来的数组。 NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。...如果数据存储在两个Python列表a和b中,我们可以迭代每个元素,如下所示: 确实符合我们的要求,但如果a和b每个包含数百万个数字,我们将为Python中循环的低效率付出代价。...矢量化描述了代码中没有任何显式的循环、索引等这些事情,当然,只是在优化的、预编译的C代码中“幕后”发生了这些事情。...如果没有矢量化,我们的代码就会被低效且难以阅读的循环所困扰。...ndarray.data:该缓冲区包含数组的实际元素。通常,我们不需要使用此属性,因为我们将使用索引访问数组中的元素。

    4.7K20

    Numpy库

    在NumPy中,提供了丰富的高级数学函数和统计函数,这些函数可以用于各种数据分析和科学计算。以下是一些主要的高级数学和统计函数: 高级数学函数 线性代数: 方阵的迹:计算方阵对角线元素之和。...向量化操作: 利用NumPy的向量化操作来替代循环,这将显著提升性能。例如,使用NumPy的np.add 、np.multiply 等函数进行数组操作,而不是逐个元素地进行加法或乘法运算。...内存管理: 大型数据集可能会导致内存不足的问题。可以通过以下方法优化内存使用: 使用pd.read _csv等函数时,设置usecols参数只读取需要的列,以减少内存占用。...此外,NumPy还能够进行向量化操作,如使用square进行平方计算,以及使用dot进行矩阵乘法。这些操作可以显著提升数据预处理的效率,进而提高整个模型训练过程的效率和效果。...在深度学习框架中,NumPy也被广泛应用于神经网络的训练过程中。例如,在训练神经网络时,每轮训练包括前向计算、损失函数(优化目标)和后向传播三个步骤。

    9510

    【工程应用九】再谈基于离散夹角余弦相似度指标的形状匹配优化(十六角度量化+指令集加速+目标只有部分在图像内的识别+最小外接矩形识别重叠等)

    一、核心的优化策略   通过前面的描述,我们知道,这种方法的得分是通过查表获取的,而且,在大部分的计算中,是没有涉及到浮点计算的,我们通过适当的构造表的内容,可以通过简单的整数类型的加减乘除来得到最后的得分...(__m128i a, __m128i b)   这是个很牛逼的东西,如果我们把a看成一个16个元素的字节数组,b也是一个16个元素的字节数据,则简单的理解他就是实现下述功能:     dst[i]...2、因为我们使用了_mm_shuffle_epi8指令,一次性可以处理16个位置的得分,也就是这个粒度是16个像素,而如果使用SSE进行判断,也只有当16个位置都不满足最小得分要求后,才可以跳出循环,这个在很多情况下也是得不偿失的...7、原本再想一个优化,即我们的特征点的保存顺序问题,现在只有0角度的特征点的保存顺序是X及Y方向都是由小向大方向坐标排列,这样访问的时候和图像的内存布局方向性一致,按理说cache miss要小一些。...当然这种比较还是要看具体的测试图。   从算法精度上看,怎么上定位也是很准确的,在执行过程中,占用的内存也不大,因此,个人觉得这个方法不失为一个优质的算子。

    36710

    高效处理大规模图像数据:MATLAB中的内存管理与并行计算技巧

    数据存储与管理2.1 使用内存映射文件内存映射文件是一种可以将大型数据集映射到内存中的方法,而不需要一次性将整个数据集加载到内存中。MATLAB提供了matfile函数来支持这一操作。...3.3 向量化计算在MATLAB中,向量化是一种重要的优化技巧,它能将原本依赖于循环的计算转化为矩阵运算,充分利用MATLAB的矩阵计算优势,从而大幅提高计算效率。...高效内存管理5.1 内存监控与优化在大数据处理过程中,内存的有效管理非常关键。MATLAB提供了多种方法来帮助用户监控和优化内存使用,避免因内存溢出而导致的计算失败或性能下降。...向量化:尽可能将循环操作替换为矩阵运算,利用MATLAB强大的矩阵运算优化。向量化代码不仅简洁,而且执行效率通常比循环代码高得多。...% 使用PCA进行特征选择[coeff, score, latent] = pca(X);通过这些方法,我们可以高效地在大数据集上构建和训练机器学习模型,进而进行预测与分析。9.

    25710

    为内存塞不下Transformer犯愁?OpenAI应用AI研究负责人写了份指南

    可以使用几种方法来降低推理过程在内存中的成本,并且加快速度。 在多 GPU 上应用各种并行机制来实现对模型的扩展。...这种方法本质上是一种识别异常值的方法。 从另一个角度来看,量化问题是一个优化问题。...另一种方法是将全精度模型视为教师模型,将低精度模型视为学生模型,然后使用蒸馏损失优化低精度模型。蒸馏通常不需要使用原始数据集。...通过剪枝实现的 N:M 稀疏化 N:M 稀疏化是一种结构化的稀疏化模式,适用于现代 GPU 硬件优化,其中每 M 个连续元素中的 N 个元素为零。...与 STE 或 SR-STE 不同,Top-KAST 方法可以在前向和反向传播的整个训练过程中保持恒定的稀疏性,还不需要使用具有稠密参数或梯度的前向传播。

    1.9K30

    边缘计算的未来——释放小型语言模型在生成式AI中的力量

    更高效的大模型即将到来: 目前已经有10亿参数模型在边缘设备上运行,而更高效的大语言模型(LLM)也正在开发中。...这只是我在这里展示的大型语言模型中的一个元素。它揭示了如何平衡计算需求以实现高效利用。例如,Llama 2的设计优化了线性和注意力项。这种维护可以帮助在非常紧凑的设备上保持高性能。...如果我们关注之前提到的线性项或模型再训练的目标,这些优化方法能够在不损害模型完整性的情况下提高性能。我们发现的一些关键优化方法包括量化、内核融合等,我将在下一张幻灯片中详细讨论。...我们探索过的优化方法还有预测解码、知识蒸馏和网络剪枝。通过进一步稀疏微调或再训练量化,我们在保持准确性的同时,实现了显著的加速。 让我详细介绍一下其中的几个优化策略。...然而,即使不采用ReLU,也可以将小值近似为0以产生稀疏性。这种方法可以在不显著降低准确性的情况下实现约1.3倍的速度提升。此外,可以实现许多优化以减少数据需求,例如量化感知训练和稀疏感知训练。

    38300
    领券