其实《机器学习》这本书对贝叶斯决策论有比较详细的介绍,不过涉及到比较多的数学公式,比较难懂。而本书对程序员比较友好,只涉及很少的数学知识,更多的是通过程序来阐述这一算法。 计算从B桶中取到灰色石头的概率的方法,就是所谓的条件概率。这里的已知条件是石头取自B桶且B桶有3块石头。 另一种有效计算条件概率的方法称为贝叶斯准则。贝叶斯准则告诉我们如何交换条件概率中的条件和结果,即如果已知P(x | c),要求P(c | x)。其公式为: ? 朴素贝叶斯 朴素贝叶斯有两个简单的假设: 特征之间相互独立。所谓独立指的是统计意义上的独立,即一个特征出现的可能性与其它特征值无关。 每个特征同等重要。 尽管上述假设存在一些小瑕疵,但朴素贝叶斯的实际效果很好。使用公式表示如下: P(W0, W1, W2, ..., WN | c) = P(W0|c)*P(W1|c)*...
朴素贝叶斯 叶斯分类器是一种概率框架下的统计学习分类器,对分类任务而言,假设在相关概率都已知的情况下,贝叶斯分类器考虑如何基于这些概率为样本判定最优的类标。 在开始介绍贝叶斯决策论之前,我们首先来回顾下概率论委员会常委--贝叶斯公式。 条件概率 朴素贝叶斯最核心的部分是贝叶斯法则,而贝叶斯法则的基石是条件概率。 贝叶斯法则如下: 对于给定的样本x,P(x)与类标无关,P(c)称为类先验概率,p(x | c )称为类条件概率。这时估计后验概率P(c | x)就变成为估计类先验概率和类条件概率的问题。 朴素贝叶斯分类器 不难看出:原始的贝叶斯分类器最大的问题在于联合概率密度函数的估计,首先需要根据经验来假设联合概率分布,其次当属性很多时,训练样本往往覆盖不够,参数的估计会出现很大的偏差。 为了避免这个问题,朴素贝叶斯分类器(naive Bayes classifier)采用了“属性条件独立性假设”,即样本数据的所有属性之间相互独立。
个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。
是类的先验概率; ? 是样本 ? 相对于类标记 ? 的类条件概率; ? 代表样本x出现的概率,但是给定样本x, ? 与类标记无关。因此我们只需要计算先验概率 ? 和类条件概率 ? 。 表示样本空间中各类别样本所占的比例,根据大数定律,当训练集包含充分的独立同分布样本时,因此 ? 可以根据各类样本出现的频率来进行估计。 ? 设计到关于 ? 所有属性的联合概率,如果直接根据样本出现的频率来估计会遇到极大的困难(比如假设样本的 ? 个属性都是二值的,那么样本空间就有 ? 为解决这个问题,朴素贝叶斯提出了“属性条件独立性假设”:对已知类别,假设所有属性相互独立。于是贝叶斯公式可以改写成: ? 其中我们用样本频率估计 ? 和 ? : ? 其中 ? 表示类别为 ? 的样本数, ? 表示训练集总样本数, ? 表示类别 ? 样本中在第 ? 个特征值取值为 ? 的样本数。 求出所有类别的 ? 后取后验概率最大的类别 ? 为最近预测类别。
首先要明确的一点是朴素贝叶斯属于生成式模型,指导思想是贝叶斯公式。 文本分类 假设现在有一些评论数据,需要识别出这篇文本属于正向评论还是负面评论,也就是对文本进行分类。 使用贝叶斯公式,将上式转换成如下形式: \hat{c}=\underset{c \in C}{\operatorname{argmax}} P(c | d)=\underset{c \in C}{\operatorname i \in \text {positions}} \log P\left(w_{i} | c\right) 训练朴素贝叶斯分类器 训练朴素贝叶斯的过程其实就是计算先验概率和似然函数的过程。 operatorname{count}\left(w_{i}, c\right)+1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V|} 朴素贝叶斯分类示例 根据训练朴素贝叶斯分类器的过程,需要计算先验概率和似然函数。
朴素贝叶斯是实用性很高的一种学习器,主要基于贝叶斯定理和条件独立性假设求出后验概率,将后验概率最大的类别作为预测的结果. 01 朴素贝叶斯 假设X是n维输入随机向量 上述方法就被称为朴素贝叶斯, 朴素贝叶斯是一种简单易懂、学习效率高的分类器,但特征间的条件独立性假设也导致了其精度受到一定程度的影响.如果没有条件概率的条件独立性假设,则就是贝叶斯网络,一种更复杂的方法 对朴素贝叶斯进行学习,其实就是对先验概率 ? 和条件概率 ? 进行估计. 02 极大似然估计 在这里采用极大似然法对先验概率和条件概率进行估计. 二、条件概率的估计 因为特征可能是离散型或连续型的,两种类型的条件概率形式有所不同,所以相应的条件概率估计的方法是有差异的,下面分别进行证明. 1、离散型特征条件概率的估计 离散型特征条件概率的估计与先验概率的估计基本一致 尤其当某些属性值出现的几率较低时,如果训练样本较少,相应的属性值可能出现的数量极少甚至不会出现,通过比例得到的概率估计会偏低甚至概率估计值为0.贝叶斯估计可以对该问题进行某种程度的修正.
最为广泛的两种分类模型是 决策树模型(Decision Tree Model) 和 朴素贝叶斯模型(Naive Bayesian Model,NBM)。 朴素贝叶斯算法思路 朴素贝叶斯法是基于 贝叶斯定理与特征条件独立假设 的分类方法,按照以前 决策树 的数据,利用朴素贝叶斯进行分类: 假设存在如下一组信息: 天气 气温 湿度 风 外出 晴朗 高温 高 晴朗 2 3 高温 2 2 高 3 4 无风 6 2 外出 9 5 多云 4 0 温暖 4 2 正常 6 1 有风 3 3 下雨 3 2 寒冷 3 1 假设所有的变量都是 独立的 又因为4个指标是相互独立的,所以: ? 朴素贝叶斯算法代码 朴素贝叶斯最重要的是构造 训练样本 ,将表: 天气 yes no 气温 yes no 湿度 yes no 风 yes no 外出 yes no 晴朗 2 3 高温 2 2 高 3 4
样本变量X,其中一个样本x, n个属性 A_1,A_2,...A_n 样本的x的属性取值x=(x_1,x_2,...x_n) 样本有k个类别,C={c_1,c_2,...c_k} 则样本x属于类别c_i 的概率为P(Y=c_i|X=x_i),即在样本x属性取值为x=(x_1,x_2,...x_n)的情况下属于类别c_i的概率 于此我们计算属于所有类别的概率取概率最大的情况,公式: c=argmax_{ c_i \in C}P(c_i|x)=argmax_{c_i \in C}P(c_i|x_1,x_2,...x_n) 其中argmax是取函数取最大值时的参数 使用贝叶斯公式:P(c_i|x)=\frac
该公式就是贝叶斯公式。 二、算法知识 01|原理: 朴素贝叶斯算法就是根据贝叶斯公式来对未知事物进行分类,通过已知条件(X=x)计算未知事物分别属于各个类别(Y=ck)时对应的概率,然后把未知事物判别为概率最大的那一类。 预估出P(Y=ck)和P(X=x|Y=ck)的值以后,我们就可以利用贝叶斯公式对在X=x的条件下P(Y=ck|X=x)对应的分类是哪一类。 ,X=xi)/P(Y=ck) 因为朴素贝叶斯对条件概率做了独立性假设,所以P(X=x1,X=x2,... K为类的个数。 ? Lj是第j维特征的最大取值。 贝叶斯估计是在极大似然估计的基础上给分子分母分别加一个常数,当λ=1时称为拉普拉斯平滑。
本文链接:https://blog.csdn.net/qq_27717921/article/details/78162175 朴素贝叶斯模型基于贝叶斯公式 ? 来估计后验概率 ? 由于分布对所有的c来讲都是相同的,所以对样本x的分类是取决于分子的大小的。 离散属性 ? ? 连续属性 对于连续属性,可以考虑概率密度函数,假定 ? 其中 ? 和 ? “抹去”,因此为了避免这种情况的出现,在估计概率值时需要进行平滑,而常用的平滑方法有“拉普拉斯修正”,具体来说,令N表示训练集D中可能的类别数,Ni表示第i个属性可能的取值数。 根据拉普拉斯修正我们可以分别修正为 ? ? 拉普拉斯修正避免了因训练集样本不充分的而导致概率估计为0的问题,并且在训练集变大时,修正过程中所引入的先验的影响也会逐渐变得可忽略,使得估值逐渐趋向实际的概率值。
贝叶斯理论是统计学中一个非常重要的也是出名的理论。贝叶斯学派强调的是概率的“主观性”。 频率学派强调频率的“自然属性”,认为应该使用事件在重复试验中发生的频率作为事件发生的概率估计 贝叶斯学派认为事件是具有随机性的,随机性的 根源在于不同的人对事件的认知状态不同。 频率派:该硬币出现正、反的概率各是50% 贝叶斯派:掷硬币的人知道正面朝上的概率是100%,对离他最近的人来说是80%,最远的人是50% 贝叶斯决策论 行动空间A:实际工作中可能采取的各种行动所构成的集合 \rho(\delta)=E_\varepsilon R(\theta, \delta) 贝叶斯决策满足: \rho(\delta^*)=\inf_\delta \rho(\delta) 贝叶斯公式 提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知” 一文搞懂极大似然估计 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解 ---- 满足: p(\
贝叶斯定理 英国数学家贝叶斯(Thomas Bayes)曾经给出如下定理: P(A) 表示 A 事件发生的概率,P(B) 表示 B 事件发生的概率;P(A|B) 表示在 B 事件已经确定发生的情况下 ,发生 A 事件的概率;P(B|A) 表示在 A 事件已经确定发生的情况下,发生 B 事件的概率;P(AB) 表示 AB 事件同时发生的概率。 变换一下得到: P(B|A)=P(B)P(A|B)/P(A) 在很多场景下,P(A|B) 是容易得出的,但是 P(B|A) 不容易获得,这时可以利用贝叶斯公式求得。 我们还可以把贝叶斯定理推论到三元情形: P(A|B,C)=P(B|A)P(A)P(C|A,B) / (P(B)P(C|B)) 朴素贝叶斯分类(Naive Bayesian Classification x)P(x) 的最大值和比较 P(Ci|x) 的最大值是一致的。
前言 朴素贝叶斯算法是流行的十大算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。 其实这个就等于:P(B|A) * P(A) = P(AB) 二、正式的定义 朴素贝叶斯算法是基于贝叶斯定理与特征条件独立假设的分类方法,然后依据被分类项属于各个类的概率,概率最大者即为所划分的类别 比如原因 A 的条件下,患有“贝叶死”的概率,就是条件概率。 简单说来就是:贝叶斯分类算法的理论基于贝叶斯公式: ? 优点: 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率; 对大数量训练和查询时具有较高的速度。 ); 对缺失数据不太敏感,算法也比较简单,常用于文本分类; 朴素贝叶斯对结果解释容易理解。
朴素贝叶斯原理 朴素贝叶斯算法基于贝叶斯定理和特征条件独立假设。 贝叶斯定理 特征条件独立:特征条件独立假设?X的?n个特征在类确定的条件下都是条件独立的。 大大简化了计算过程,但是因为这个假设太过严格,所以会相应牺牲一定的准确率。这也是为什么称呼为朴素的原因。 ? ? 4.1 朴素贝叶斯的主要优点 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。 4.2 朴素贝叶斯的主要缺点 朴素贝叶斯模型的特征条件独立假设在实际应用中往往是不成立的。 如果样本数据分布不能很好的代表样本空间分布,那先验概率容易测不准。 对输入数据的表达形式很敏感。 详细案例 算法杂货铺——分类算法之朴素贝叶斯分类 http://uml.org.cn/sjjmwj/201310221.asp 实现朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法 实战项目代码下载: 关注微信公众号 datanlp 然后回复 贝叶斯 即可获取下载链接。
朴素贝叶斯是基于贝叶斯理论的一种监督学习算法,『朴素』意思是假设所有特征两两相互独立,给出类别y和一组依赖特征[x1..xn],根据贝叶斯理论,他们有如下的关系。 P(y|x_1,...x_n) = \frac{P(y)P(x_1,...x_n|y)}{P(x_1,...x_n)} 根据贝叶斯独立性假设 P(xi|y, x1,...,x_{i-1},... 不同的朴素贝叶斯分类器的差异主要在于用了不同的关于P(xi|y)分布的假设。 尽管朴素贝叶斯过于简化假设,但在实际文件分类和垃圾邮件过滤中分类效果相当不错。 朴素贝叶斯只需要少量的训练数据来估计必要的参数。(朴素贝叶斯效果好以及它适合哪种类型的数据理论解释,可参考下面的文献) 朴素贝叶斯学习器和分类器和一些复杂的方法相比,可以做到非常快。 另一方面,虽然朴素贝叶斯以分类器著称,但它是一个坏的估计,所以不必计较从predict_proba得到的概率输出。 References: H. Zhang (2004).
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/115751.html原文链接:https://javaforall.cn
2.贝叶斯 2.1 贝叶斯公式 学过概率论的都应该对上面这个公式很熟悉,这里就不再细讲了。这里需要注意的点是注意区分先验概率、后验概率、联合概率三个概念。 3.朴素贝叶斯 我们以垃圾邮件识别来引出朴素贝叶斯。 我们要做的是判断上面那个邮件:“我司可办理正规发票(保真)17%增值税发票点数优惠”是否属于垃圾邮件。 3.1 条件独立性假设 引入条件独立假设: 我们把求某一类邮件中包含上述那些词语的概率等同于某一类邮件中包含每一种词语概率的乘积!!这其实就是朴素贝叶斯的实质,也是条件独立假设的实质。 1.加上条件独立假设的贝叶斯方法就是朴素贝叶斯方法(Naive Bayes)。2.由于乘法交换律,朴素贝叶斯中算出来交换词语顺序的条件概率完全一样。 3.6 朴素贝叶斯的应用与代码实现 编程实现拉普拉斯修正的朴素贝叶斯分类器,并以西瓜数据集3.0为训练集,对“测1”样本进行判别。
朴素贝叶斯分类算法 分类算法常用的有很多种,朴素贝叶斯算法是其中一个比较常用的,之所以称为朴素贝叶斯算法主要是因为该算法最基本的原理是基于贝叶斯定理的,称为朴素是因为该算法成立的前提是特征之间必须得是独立的 朴素贝叶斯(Naive Bayes)算法理论基础是基于贝叶斯定理和条件独立性假设的一种分类方法。 四、朴素贝叶斯分类器 “朴素贝叶斯”(Naïve Bayes)既可以是一种算法——朴素贝叶斯算法,也可以是一种模型——朴素贝叶斯分类模型(分类器)。 朴素贝叶斯分类器这个模型的训练过程都不需要先从模型函数推导目标函数,再优化目标函数求 Cost 最小的解吗?朴素贝叶斯公式就是朴素贝叶斯分类器的训练算法啦?? Induction) 3、带你搞懂朴素贝叶斯分类算法 4、全概率公式、贝叶斯公式推导过程 5、概率论的链式法则 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
朴素贝叶斯(Naive Bayes, NB)是基于“特征之间是独立的”这一朴素假设,应用贝叶斯定理的监督学习算法。 伯努利朴素贝叶斯 Bernoulli Naive Bayes是指当特征属性为连续值时,而且分布服从伯努利分布,那么在计算P(x|y)的时候可以直接使用伯努利分布的概率公式: P(xk∣y)=P(1∣y 当多个特征属性之间存在着某种相关关系的时候,使用朴素贝叶斯算法就没法解决这类问题,那么贝叶斯网络就是解决这类应用场景的一个非常好的算法。 每个节点在给定其直接前驱的时候,条件独立于其后继。 贝叶斯网络的关键方法是图模型,构建一个图模型我们需要把具有因果联系的各个变量用箭头连在一起。贝叶斯网络的有向无环图中的节点表示随机变量。 一般化的贝叶斯网络 ?
简介 Naive Bayesian算法 也叫朴素贝叶斯算法(或者称为傻瓜式贝叶斯分类) 朴素(傻瓜):特征条件独立假设 贝叶斯:基于贝叶斯定理 这个算法确实十分朴素(傻瓜),属于监督学习,它是一个常用于寻找决策面的算法 患上感冒的概率大约是66% (2)朴素贝叶斯分类器公式 假设某个体有n项特征,分别为F1、F2、…、Fn。 Fn|C)P(C) 的最大值 根据朴素贝叶斯的朴素特点(特征条件独立假设),因此: P(F1 x F2 ... Fn|C)P(C) = P(F1|C) x P(F2|C) ... P(Fn|C)P(C) 上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。 accuracy 在主程序Main结尾加入一段: from studentCode import submitAccuracy print(submitAccuracy()) 得到正确率:0.884 朴素贝叶斯的优势与劣势
文本分类:过滤恶意留言 此处有两个改进的地方: (1)若有的类别没有出现,其概率就是0,会十分影响分类器的性能。所以采取各类别默认1次累加,总类别(两类)次数2,这样不影响相对大小。 ,创建一个包含所有词汇的词表。 ,创建一个包含所有词汇的词表。 ,长度小于2的默认为不是词汇,过滤掉即可。 返回一串小写的拆分后的邮件信息。
以人工智能助力“教、考、管、营销”教育产业全流程,帮助教育企业业务提效,实现个性化教学,以科技助力教育行业发展。
扫码关注腾讯云开发者
领取腾讯云代金券