首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas全景透视:解锁数据科学的黄金钥匙

在探究这个问题之前,让我们先理解一下 Pandas 的背景和特点。优化的数据结构:Pandas提供了几种高效的数据结构,如DataFrame和Series,它们是为了优化数值计算和数据操作而设计的。...查找两个索引的集合差异举个例子import pandas as pd# 创建两个索引对象index1 = pd.Index([1, 2, 3, 4])index2 = pd.Index([3, 4, 5..., 6])# 使用 difference() 方法获取两个索引对象之间的差异index_difference = index1.difference(index2)print("两个索引对象之间的差异:..., 4, 5], 'B': [5, 4, 3, 2, 1]})# 查找列'A'中大于3的所有行,并将结果转换为64位整数result = (df['A'] > 3).astype('int64')...,默认为Falsesuffixes:如果左右数据出现重复列,新数据表头会用此后缀进行区分,默认为_x和_y举个例子import pandas as pd# 创建两个 DataFramedf1 = pd.DataFrame

11710

Pandas速查卡-Python数据科学

刚开始学习pandas时要记住所有常用的函数和方法显然是有困难的,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org...关键词和导入 在这个速查卡中,我们会用到一下缩写: df 二维的表格型数据结构DataFrame s 一维数组Series 您还需要执行以下导入才能开始: import pandas as pd import...) 所有列的唯一值和计数 选择 df[col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

9.2K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    直观地解释和可视化每个复杂的DataFrame操作

    大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。

    13.3K20

    一行代码将Pandas加速4倍

    这正是 Modin 所做的。它将 DataFrame 分割成不同的部分,这样每个部分都可以发送到不同的 CPU 核。Modin 在行和列之间划分 DataFrame。...但是对于 Modin 来说,由于分区是跨两个维度进行的,所以并行处理对于所有形状的数据流都是有效的,不管它们是更宽的(很多列)、更长的(很多行),还是两者都有。 ?...panda的DataFrame(左)存储为一个块,只发送到一个CPU核。Modin的DataFrame(右)跨行和列进行分区,每个分区可以发送到不同的CPU核上,直到用光系统中的所有CPU核。...此函数查找 DataFrame 中的所有 NaN 值,并将它们替换为你选择的值。panda 必须遍历每一行和每一列来查找 NaN 值并替换它们。...正如你所看到的,在某些操作中,Modin 要快得多,通常是读取数据并查找值。其他操作,如执行统计计算,在 pandas 中要快得多。

    2.9K10

    一行代码将Pandas加速4倍

    这正是 Modin 所做的。它将 DataFrame 分割成不同的部分,这样每个部分都可以发送到不同的 CPU 核。Modin 在行和列之间划分 DataFrame。...但是对于 Modin 来说,由于分区是跨两个维度进行的,所以并行处理对于所有形状的数据流都是有效的,不管它们是更宽的(很多列)、更长的(很多行),还是两者都有。 ?...panda的DataFrame(左)存储为一个块,只发送到一个CPU核。Modin的DataFrame(右)跨行和列进行分区,每个分区可以发送到不同的CPU核上,直到用光系统中的所有CPU核。...此函数查找 DataFrame 中的所有 NaN 值,并将它们替换为你选择的值。panda 必须遍历每一行和每一列来查找 NaN 值并替换它们。...正如你所看到的,在某些操作中,Modin 要快得多,通常是读取数据并查找值。其他操作,如执行统计计算,在 pandas 中要快得多。

    2.6K10

    Pandas缺失数据处理

    中的NaN值来自NumPy库,NumPy中缺失值有几种表示形式:NaN,NAN,nan,他们都一样 缺失值和其它类型的数据不同,它毫无意义,NaN不等于0,也不等于空串 print(pd.isnull(...两个表之间做join也有可能join出 删除缺失值 填充 删除 titanic_train.dropna(axis=,subset=,how=,inplace=) axis, subset 如何考虑是否是缺失值..., 默认是判断缺失值的时候会考虑所有列, 传入了subset只会考虑subset中传入的列 how any 只要有缺失就删除 all 只有整行/整列数据所有的都是缺失值才会删除  inplace 是否在原始数据中删除缺失值...'].apply(lambda x:x*2) # 检查'column1'中的每个元素是否大于10,如果是,则将新列'new_column'中的值赋为0 df['new_column'] = df.apply...或 row['new_column'] 请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中 import pandas

    11310

    分析新闻评论数据并进行情绪识别

    ),并将结果添加到列表中;6)使用pandas库,将列表转换为一个数据框(DataFrame),并将数据框保存到一个CSV文件中;三、示例代码和解释以下是一个简单的示例代码,用Python语言和相关库,...cookie信息是一种用于在浏览器和服务器之间传递数据的机制,它可以在请求和响应中携带,并保存在浏览器中。...# 定义正则表达式,匹配评论内容和评论时间matches = pattern.findall(str(comment_area)) # 在评论区域的元素中查找所有匹配项,并返回一个列表for match...[comment, time]) # 将评论内容和评论时间添加到列表中# 使用TextBlob库,对每条评论内容进行情绪分析,计算其极性(polarity)和主观性(subjectivity),并将结果添加到列表中...(subjectivity) # 将主观性添加到列表中# 使用pandas库,将列表转换为一个数据框(DataFrame),并将数据框保存到一个CSV文件中df = pd.DataFrame(comments

    38911

    PySpark UD(A)F 的高效使用

    这两个主题都超出了本文的范围,但如果考虑将PySpark作为更大数据集的panda和scikit-learn的替代方案,那么应该考虑到这两个主题。...为了更好地理解实质性的性能差异,现在将绕道而行,调查这两个filter示例的背后情况。...如果工作流从 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...(*selects) 函数complex_dtypes_to_json将一个给定的Spark数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...].apply(ct_val_to_json) return df 3)装饰器 至此,得到了名为pandas_udf_ct的最终装饰器所需要的所有东西,并将所有成分组合在一起。

    19.7K31

    【数据处理包Pandas】DataFrame对象的合并

    对象 np.concatenate与pd.concat最主要的差异就是 Pandas 合并时会保留索引,并且允许索引是重复的。...可选值包括: ‘left’:保留左侧 DataFrame 中的所有行,并将右侧 DataFrame 中与左侧匹配的行合并到结果中。...‘right’:保留右侧 DataFrame 中的所有行,并将左侧 DataFrame 中与右侧匹配的行合并到结果中。...‘outer’:保留左右两侧 DataFrame 中的所有行,并将它们合并到结果中。如果某一侧 DataFrame 中没有匹配的行,则将 NaN 填充到结果中的相应位置。...suffixes:如果在合并过程中遇到了重叠的列名,则添加到重叠列名的后缀。 copy:如果为 False,则不复制数据。默认为 True。

    9500

    数据分析必备!Pandas实用手册(PART III)

    对每一个样本做自定义运算 上小节我们用apply函数对DataFrame里头的某个Series做运算并生成新栏位: df[new_col] = df.Survived.apply(......不过你时常会想要把样本(row)里头的多个栏位一次取出做运算并产生一个新的值,这时你可以自定义一个Python function并将apply函数套用到整个DataFrame之上: 此例中apply函数将...一行描述数值栏位 当你想要快速了解DataFrame里所有数值栏位的统计数据(最小值、最大值、平均和中位数等)时可以使用describe函数: 你也可以用取得想要关注的数据一节的技巧来选取自己关心的统计数据...(style),并将喜欢的样式通过plt.style.use()套用到所有DataFrame的plot函数: 与pandas相得益彰的实用工具 前面几个章节介绍了不少pandas的使用技巧与操作概念,这节则介绍一些我认为十分适合与...pip install swifter 接着让我建立一个有100万样本的dataframe,测试swift与原版apply函数的效果差异: 在这个简单的平方运算中,swifter版的appy函数在colab

    1.8K20

    嘀~正则表达式快速上手指南(下篇)

    将转换完的字符串添加到 emails_dict 字典中,以便后续能极其方便地转换为pandas数据结构。 在步骤3B中,我们对 s_name 进行几乎一致的操作. ?...参照以上示例,我们输出了两种不同的结果,它们之间存在非常大的差异。正如所见, + 可以解析出整个日期而*只解析出一个空格和数字1。 接下来讲解邮件的标题。...通过上面这行代码,使用pandas的DataFrame() 函数,我们将字典组成的 emails 转换成数据帧,并赋给变量emails_df. 就这么简单。...我们已经拥有了一个精致的Pandas数据帧,实际上它是一个简洁的表格,包含了从email中提取的所有信息。 请看下数据帧的前几行: ?...The dataframe.head() 函数显示了数据序列的前几行。该函数接受1个参数。一个可选的参数用于定义需要显示的行数, n=3 表示前3行。 也可以精确地查找。

    4K10

    Pandas中替换值的简单方法

    使用内置的 Pandas 方法进行高级数据处理和字符串操作 Pandas 库被广泛用作数据处理和分析工具,用于从数据中清理和提取特征。 在处理数据时,编辑或删除某些数据作为预处理步骤的一部分。...这可能涉及从现有列创建新列,或修改现有列以使它们适合更易于使用。为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。...在这篇文章中,让我们具体看看在 DataFrame 中的列中替换值和子字符串。当您想替换列中的每个值或只想编辑值的一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...也就是说,需要传递想要更改的每个值,以及希望将其更改为什么值。在某些情况下,使用查找和替换与定义的正则表达式匹配的所有内容可能更容易。

    5.5K30

    使用 HuggingFace Transformers创建自己的搜索引擎

    它反映了单个矢量维度的相对比较,而不是绝对比较。在这篇文章中,我不会深入研究余弦相似度背后的数学,但是要理解它是一个内积空间中两个非零向量之间的相似性度量。 ?...在本教程中,我将解释如何使用HuggingFace Transformers库、Non-Metric Space库和Dash库来构建一个新的和改进的自动侍酒师。...导入依赖项和数据 由于数据已经是一个sqlite文件,所以很容易将数据连接并加载。按照三个步骤加载库、数据和DataFrame。 导入pandas和sqlite3库。 连接到sqlite文件。...将数据加载到一个pandas DataFrame中。...为了使向量更容易分析,使用numpy将数据从张量对象转换为列表对象,然后将列表添加到pandas DataFrame。

    3.7K40

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...我们将使用 =IF(A2 的公式,将其拖到新存储列中的所有单元格。 使用 numpy 中的 where 方法可以完成 Pandas 中的相同操作。...outer") 结果如下: 与 VLOOKUP 相比,merge 有许多优点: 查找值不需要是查找表的第一列; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    pandas 入门 1 :数据集的创建和绘制

    #导入本教程所需的所有库#导入库中特定函数的一般语法: ## from(library)import(特定库函数) from pandas import DataFrame , read_csv import...我们基本上完成了数据集的创建。现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...我们可以检查所有数据是否都是数据类型整数。将此列的数据类型设置为float是没有意义的。在此分析中,我不担心任何可能的异常值。...列中的最大值 [df['Births'] == df['Births'].max()] 等于 [查找出生列中等于973的所有记录] df ['Names'] [df [' Births'] == df

    6.1K10

    Python 算法交易秘籍(一)

    这将返回另一个timedelta对象,其中包含1 天的时间差值,这是由td1和td2持有的时间差值之间的差异。在步骤 6中,您将td1乘以2.5,一个浮点数。...在步骤 3中,通过直接调用构造函数并将time_series_data作为参数来创建一个 pandas DataFrame对象,并将返回数据分配给df。字典的键成为df的列名,值成为数据。...这意味着提取直到索引 2(即 0 和 1)的所有行和直到索引 2(再次是 0 和 1)的所有列的数据。返回的数据是一个pandas.DataFrame对象。...连接:在步骤 6中,您创建了一个新的DataFrame,类似于创建 pandas.DataFrame 对象配方中创建的那个,并将其赋值给df_new。...您使用pandas.concat()函数通过垂直连接dt和df_new来创建一个新的DataFrame。这意味着将创建一个新的DataFrame,其中df_new的行附加在df的行下面。

    79450

    在pandas中利用hdf5高效存储数据

    接下来我们创建pandas中不同的两种对象,并将它们共同保存到store中,首先创建Series对象: import numpy as np #创建一个series对象 s = pd.Series(np.random.randn...对象进行追加和表格查询操作 ❞ 使用put()方法将数据存入store对象中: store.put(key='s', value=s);store.put(key='df', value=df) 既然是键值对的格式...还可以从pandas中的数据结构直接导出到本地h5文件中: #创建新的数据框 df_ = pd.DataFrame(np.random.randn(5,5)) #导出到已存在的h5文件中,这里需要指定key...') #查看指定h5对象中的所有键 print(store.keys()) 图7 2.2 读入文件 在pandas中读入HDF5文件的方式主要有两种,一是通过上一节中类似的方式创建与本地h5文件连接的...而且两者存储后的文件大小也存在很大差异: 图12 csv比HDF5多占用将近一倍的空间,这还是在我们没有开启HDF5压缩的情况下,接下来我们关闭所有IO连接,运行下面的代码来比较对上述两个文件中数据还原到数据框上两者用时差异

    2.9K30

    在pandas中利用hdf5高效存储数据

    在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向...接下来我们创建pandas中不同的两种对象,并将它们共同保存到store中,首先创建Series对象: import numpy as np #创建一个series对象 s = pd.Series(np.random.randn...h5文件中: #创建新的数据框 df_ = pd.DataFrame(np.random.randn(5,5)) #导出到已存在的h5文件中,这里需要指定key df_.to_hdf(path_or_buf...,接着分别用pandas中写出HDF5和csv格式文件的方式持久化存储: import pandas as pd import numpy as np import time store = pd.HDFStore...图12 csv比HDF5多占用将近一倍的空间,这还是在我们没有开启HDF5压缩的情况下,接下来我们关闭所有IO连接,运行下面的代码来比较对上述两个文件中数据还原到数据框上两者用时差异: import pandas

    5.4K20
    领券