首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

对比Excel,Python pandas删除数据框架中的行

标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6

4.6K20

pandas数据清洗-删除没有序号的所有行的数据

pandas数据清洗-删除没有序号的所有行的数据 问题:我的数据如下,要求:我想要的是:有序号的行留下,没有序号的行都不要 图片 【代码及解析】 import pandas as pd filepath...,默认0,即取第一行 skiprows:省略指定行数的数据 skip_footer:省略从尾部数的行数据 **继续** lst=[] for index,row in df.iterrows():...=int: lst.append(index) lst 定义一个空列表,用于存储第一列中数据类型不是int的的行号 方法:iterrows() 是在数据框中的行进行迭代的一个生成器,...它返回每行的索引及一个包含行本身的对象。...所以,当我们在需要遍历行数据的时候,就可以使用 iterrows()方法实现了。 df1=df.drop(labels=lst) 删除l列表lst存储的所有行号 【效果图】: 完成

1.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python中的一个关键字,可用于删除对象。我们可以使用它从数据框架中删除列。...实际上我们没有删除,而是创建了一个新的数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两列。然后,我们将新创建的数据框架赋值给原始数据框架以完成“删除操作”。注意代码中的双方括号。

    7.2K20

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...3, "B":"D"] 结果: (5)根据条件读取 # 读取第B列中大于6的值 data5 = data.loc[ data.B > 6] #等价于 data5 = data[data.B

    10K21

    用过Excel,就会获取pandas数据框架中的值、行和列

    标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。

    19.2K60

    Oracle-使用切片删除的方式清理非分区表中的超巨数据

    获取分片 Step3: 外键校验以及通过存过清除分片数据 Step3.1: 外键校验 Step3.2: 根据分片清除过期数据 Step3.3:FORALL和BULK COLLECT知识点 概述 大表中海量历史数据的更新与删除一直是一件非常头痛的事情...,试想当一些要更新或者删除的历史数据集中分布在segment的某些位置时(例如所要删除的数据均存放在一张表的前200个Extents中),因为脚本是根据大小均匀分割区域的,所以某些区域是根本没有我们所要处理的数据的...(希望仅针对存有满足o条件数据的范围rowid分块) 注意替换这里!!...也因为rowid是来源于SELECT,所以我们可以指定针对那些存在符合条件数据的范围分区。...几点注意事项: 请将该脚本放到Pl/SQL Developer或Toad之类的工具中运行,在sqlplus中运行可能出现ORA-00933 不要忘记替换标注中的条件 自行控制commit

    1.4K20

    盘点Pandas中数据删除drop函数的一个细节用法

    一、前言 前几天在Python最强王者群有个叫【Chloe】的粉丝问了一个关于Pandas中的drop函数的问题,这里拿出来给大家分享下,一起学习。 二、解决过程 下图是粉丝写的代码。...index是索引的意思,我感觉这块写在一起了,看上去不太好理解,在里边还多了一层筛选。这里给出【月神】佬的解答,一起来看看吧! 直接上图了,如下图所示: 下图是官网关于该函数的解析。...之前我一直用的是columns,确实好像很少看到index,这下清晰了。不过【月神】还是推荐使用反向索引。 三、总结 大家好,我是皮皮。...这篇文章基于粉丝提问,针对Pandas中数据删除的问题,给出了具体说明和演示,顺利地帮助粉丝解决了问题!...最后感谢粉丝【Chloe】提问,感谢【(这是月亮的背面)】和【dcpeng】大佬给出的示例和代码支持。

    62720

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...方法将行追加到数据帧。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    Pandas 秘籍:1~5

    这在第 3 步中得到确认,在第 3 步中,结果(没有head方法)将返回新的数据列,并且可以根据需要轻松地将其作为列附加到数据帧中。axis等于1/index的其他步骤将返回新的数据行。...和cumprod 四、选择数据子集 在本章中,我们将介绍以下主题: 选择序列数据 选择数据帧的行 同时选择数据帧的行和列 同时通过整数和标签和选择数据 加速标量选择 以延迟方式对行切片 按词典顺序切片...逗号左侧的选择始终根据行索引选择行。 逗号右边的选择始终根据列索引选择列。 不必同时选择行和列。 步骤 2 显示了如何选择所有行和列的子集。 冒号表示一个切片对象,该对象仅返回该维度的所有值。...mask方法的第一个参数是条件,该条件通常是布尔级数,例如criteria。 因为mask方法是从数据帧调用的,所以条件为False的每一行中的所有值都将变为丢失。...注意,调用assert_frame_equal后没有输出。 当两个传递的数据帧相等时,此方法返回None;否则,将引发错误。 更多 让我们比较掩盖和删除丢失的行与布尔索引之间的速度差异。

    37.6K10

    Pandas 学习手册中文第二版:1~5

    创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...()删除行 使用布尔选择删除行 使用切片删除行 配置 Pandas 以下代码将为以下示例配置 Pandas 环境。...要获得删除了这些行的数据帧,请选择选择的补码。...-2e/img/00223.jpeg)] 使用切片删除行 切片可用于从数据帧中删除记录。...这些行尚未从sp500数据中删除,对这三行的更改将更改sp500中的数据。 防止这种情况的正确措施是制作切片的副本,这会导致复制指定行的数据的新数据帧。

    8.3K10

    Pandas系列 - DataFrame操作

    概览 pandas.DataFrame 创建DataFrame 列表 字典 系列(Series) 列选择 列添加 列删除 pop/del 行选择,添加和删除 标签选择 loc 按整数位置选择 iloc...行切片 附加行 append 删除行 drop 数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列 数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴...2 index 对于行标签,要用于结果帧的索引是可选缺省值np.arrange(n),如果没有传递索引值。 3 columns 对于列标签,可选的默认语法是 - np.arange(n)。...创建DataFrame Pandas数据帧(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据帧(DataFrame) 列表 import...drop 使用索引标签从DataFrame中删除或删除行。

    3.9K10

    python数据分析——数据的选择和运算

    Python的Pandas库为我们提供了强大的数据选择工具。通过DataFrame的结构化数据存储方式,我们可以轻松地按照行或列进行数据的选择。...例如,使用.loc和.iloc可以根据行标签和行号来选取数据,而.query方法则允许我们根据条件表达式来筛选数据。 在数据选择的基础上,数据运算则是进一步挖掘数据内在规律的重要手段。...主要有以下四种方式: 索引方式 使用场景 基础索引 获取单个元素 切片 获取子数组 布尔索引 根据比较操作,获取数组元素 数组索引 传递索引数组,更加快速,灵活的获取子数据集 数组的索引主要用来获得数组中的数据...[a:b,m:n],逗号前选择行,逗号后选择列。...关键技术: 二维数组索引语法总结如下: [对行进行切片,对列的切片] 对行的切片:可以有start:stop:step 对列的切片:可以有start:stop:step import pandas

    19310

    Pandas部分应掌握的重要知识点

    索引器中括号内行列下标的位置上都允许使用切片和花式索引,下例中行使用切片,列使用花式索引。 注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...5、根据行标签或列标签查看数据 (1)通用方法:因为行标签或列标签通常是字符串,所以需要使用.loc标签索引器。...6、根据给定条件查询数据 实现要领有两个: ① 因为多数条件都会涉及列标签,因此都要使用loc索引器(而非iloc索引器); ② 因为通常是寻找满足条件的行,所以索引器内部需要在行的维度上表达查询条件...的过滤条件要求显式的指定某一列 六、处理缺失值 1、Pandas中缺失值的表示 Pandas表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用Python中的...Pandas对象 notnull(): 与isnull()相反 dropna(): 返回一个删除缺失值后的数据对象 fillna(): 返回一个填充了缺失值之后的数据对象 (1)判断是否含有缺失值: data.isnull

    4700

    python数据科学系列:pandas入门详细教程

    pandas,python+data+analysis的组合缩写,是python中基于numpy和matplotlib的第三方数据分析库,与后两者共同构成了python数据分析的基础工具包,享有数分三剑客之名...isin/notin,条件范围查询,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值...loc和iloc应该理解为是series和dataframe的属性而非函数,应用loc和iloc进行数据访问就是根据属性值访问的过程 另外,在pandas早些版本中,还存在loc和iloc的兼容结构,即...检测各行是否重复,返回一个行索引的bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复的多行时,首行被认为是合法的而可以保留 删除重复值,drop_duplicates...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas

    14.9K20

    Python|Pandas的常用操作

    本文来讲述一下科学计算库Pandas中的一些常用操作~ 看完别忘记文末点赞呦~ 01 为什么要用Pandas?...Pandas的主要特点 基于Numpy创建,继承了Numpy中优秀的特点; 能够直接读取结构化数据进行操作; 以类似于表格的形式呈现数据,便于观察; 提供了大量的数理统计方法。...# 查看头部和尾部数据(可以传参) df1.head() # 查看头部数据,默认为前五行 df1.tail() # 查看尾部数据,默认为后五行 # 查看索引与列名 df1.index # 查看索引...07 按条件选择数据 # 用单列的值选择数据 df1[df1.A>0] # 选择df中满足条件的值(不满足会现实NaN) df1[df1>0] # 使用isin()选择 df2[df2['E']...根据索引值进行删除 df2.drop(df2.index[3]) # 删除缺失值 df2.dropna() # 去除重复值 df2.drop_duplicates() # 按照条件删除数据 df2

    2.1K40

    如何使用 Python 只删除 csv 中的一行?

    在本教程中,我们将学习使用 python 只删除 csv 中的一行。我们将使用熊猫图书馆。熊猫是一个用于数据分析的开源库;它是调查数据和见解的最流行的 Python 库之一。...CSV 文件 运行代码后的 CSV 文件 − 示例 2:按标签删除行 这是一个与上面类似的示例;在此示例中,我们将删除带有标签“row”的行。...CSV 文件 − 运行代码后的 CSV 文件 − 示例 3:删除带有条件的行 在此示例中,我们首先读取 CSV 文件,然后使用 drop() 方法删除“Name”列中的值等于“John”的行。...为此,我们首先使用布尔索引来选择满足条件的行。最后,我们使用 to_csv() 将更新的数据帧写回 CSV 文件,再次设置 index=False。...它提供高性能的数据结构。我们说明了从 csv 文件中删除行的 drop 方法。根据需要,我们可以按索引、标签或条件指定要删除的行。此方法允许从csv文件中删除一行或多行。

    82350

    利用NumPy和Pandas进行机器学习数据处理与分析

    DataFrame是pandas中的二维表格数据结构,类似于Excel中的工作表或数据库中的表。它由行和列组成,每列可以有不同的数据类型。...例如,要访问DataFrame中的一列数据,可以使用列名:# 访问列print(df['Name'])运行结果如下要访问DataFrame中的一行数据,可以使用iloc和loc方法:# 访问行print...(df.iloc[0]) # 根据索引访问print(df.loc[0]) # 根据标签访问运行结果如下要根据条件筛选数据,可以使用布尔索引:要根据条件筛选数据,可以使用布尔索引:# 筛选数据filtered_df...= df[df['Age'] > 25]print(filtered_df)运行结果如下添加和删除数据我们可以使用相应的方法向Series或DataFrame中添加或删除数据。...(df)运行结果如下要删除列或行,可以使用drop方法# 删除列df = df.drop('City', axis=1)print(df)运行结果如下# 删除行df = df.drop(0)print(

    27820
    领券