首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas 查找,丢弃列值唯一的列

前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

5.7K21

yii2自动更新时间,根据条件设定指定值,接受多选框的值

gii自动生成的_form.php文件中,我们可以根据代码$model->isNewRecord 返回的值,来判断当前是增加还是更新,在form.php文件中,还可以根据它的属性值给字段input框赋予默认值...connect字段为多选框字段,前台传到后台的数据默认是数组格式。...该字段对应是让tostring方法处理,先把它的值赋给静态变量$connect,然后在beforeSave中把数组格式化成字符串,在返回,存入数据库。 <?...beforeSave($insert){         if(parent::beforeSave($insert)){             if($this->isNewRecord){//判断是更新还是插入...function tostring(){//可通过方法单独控制某个字段,也可以直接通过beforesave方法控制             //if($this->isNewRecord){//判断是更新还是插入

1.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas中如何查找某列中最大的值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    40110

    使用pandas筛选出指定列值所对应的行

    在pandas中怎么样实现类似mysql查找语句的功能: select * from table where column_name = some_value; pandas中获取数据的有以下几种方法...布尔索引 该方法其实就是找出每一行中符合条件的真值(true value),如找出列A中所有值等于foo df[df['A'] == 'foo'] # 判断等式是否成立 ?...位置索引 使用iloc方法,根据索引的位置来查找数据的。...数据提取不止前面提到的情况,第一个答案就给出了以下几种常见情况:1、筛选出列值等于标量的行,用== df.loc[df['column_name'] == some_value] 2、筛选出列值属于某个范围内的行...df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)] 4、筛选出列值不等于某个/些值的行 df.loc[df['column_name

    19.1K10

    Power BI 图像在条件格式和列值的行为差异

    Power BI在表格矩阵条件格式和列、值区域均可以放入图像,支持URL、Base64、SVG等格式。同样的图像在不同的区域有不同的显示特性。...接着,我们进行极小值测试,将图像度量值调整为5*5,可以看到条件格式显示效果不变,但是列的图像变小。 另一端极大值测试,将图像度量值调整为100*100,显示效果似乎与36*36没什么不同。...以上测试可以得出第一个结论:条件格式图像的显示大小和图像本身的大小无关;列值的图像显示大小既受图像本身大小影响,又受表格矩阵格式设置区域的区域空间影响。 那么,条件格式图像大小是不是恒定的?不是。...还是36*36的正方形,这里把表格的字体放大,可以看到条件格式的正方形图像也对应放大,列值的图像没有变化。 所以,条件格式图像的大小依托于当前列值的文本格式。...换一个场景,对店铺名称施加排名条件格式(SVG图像),为该列设置背景色,可以看到背景色穿透了本应存在的缝隙,条件格式和列值融为一体。

    16410

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

    19.2K60

    Excel公式练习:根据条件获取唯一的第n个值

    引言:本文的练习整理自chandoo.org。多一些练习,想想自己会怎么解决这个问题,看看别人又是怎样解决的,这样能够快速提高Excel公式编写水平。...本次的练习是:编写一个公式,用于显示数据(Data)列中与当前选定查找项目匹配的项目(Item)列的第n个最大的唯一值。 示例数据如下图1所示。...单元格D2、E2中的数据可以输入,公式根据其数据返回相应的结果。根据不同的输入数据,公式的结果应该如下图2所示。 图2 规则: 1.公式中不能使用整列引用。 2.不能使用中间公式。...4.无论数据放置在工作表中的任何地方,公式都能正常运行。 5.除了规定的名称“i”“d”“n”“l”外,不能有其它硬编码引用。 请写下你的公式。 解决方案 公式1:数组公式。...=LARGE((MATCH(l&d,i&d,)=ROW(i)-MIN(ROW(i)-1))*(i=l)*d,n) …… 上面列出的大多数公式都没有进行详细的解析,有兴趣的朋友可以参照前面文章给出的方法逐个研究

    2.2K30

    Excel公式练习:根据条件获取唯一的第n个值(续)

    本次的练习是:在《Excel公式练习:根据条件获取唯一的第n个值》中,编写了一个公式用于显示数据(Data)列中与当前选定查找项目匹配的项目(Item)列的第n个最大的唯一值。...然而,如果n是6,而我们只有3个唯一值,那么编写的公式应该返回0。 这里,你的任务是修改这些公式,以便在上面所说的情况下,返回最小的非零唯一值。 示例数据如下图1所示。...单元格D2、E2中的数据可以输入,公式根据其数据返回相应的结果。根据不同的输入数据,公式的结果应该如下图2所示。 图2 规则: 1.公式中不能使用整列引用。 2.不能使用中间公式。...4.无论数据放置在工作表中的任何地方,公式都能正常运行。 5.除了规定的名称“i”“d”“n”“l”外,不能有其它硬编码引用。 请写下你的公式。 解决方案 公式1:数组公式。...=MIN(IFERROR(LARGE(IF(FREQUENCY(IF(i=l,d),d),d),ROW(OFFSET(A1,,,n))),"")) …… 上面列出的大多数公式都没有进行详细的解析,有兴趣的朋友可以参照前面文章给出的方法逐个研究

    1.9K10

    Python数据分析库Pandas

    本文将介绍Pandas的一些高级知识点,包括条件选择、聚合和分组、重塑和透视以及时间序列数据处理等方面。...条件选择 在对数据进行操作时,经常需要对数据进行筛选和过滤,Pandas提供了多种条件选择的方式。 1.1 普通方式 使用比较运算符(, ==, !...例如,根据某一列的值来计算另一列的均值或总和。Pandas提供了多种聚合和分组的函数,如下所示。...2.1 groupby() groupby()函数可以根据某一列或多列将数据分组,例如: df.groupby('A').sum() 2.2 聚合函数 Pandas提供了丰富的聚合函数,包括求和、均值、...例如,对分组后的数据求和: df.groupby('A').sum() 可以对不同的列使用不同的聚合函数: df.groupby('A').agg({'B':'sum', 'C':'mean'}) 2.3

    2.9K20

    在Pandas中实现Excel的SUMIF和COUNTIF函数功能

    pandas中的SUMIF 使用布尔索引 要查找Manhattan区的电话总数。布尔索引是pandas中非常常见的技术。本质上,它对数据框架应用筛选,只选择符合条件的记录。...在示例中: 组: Borough列 数据列:num_calls列 操作:sum() df.groupby('Borough')['num_calls'].sum() 图5:pandas groupby...Pandas中的SUMIFS SUMIFS是另一个在Excel中经常使用的函数,允许在执行求和计算时使用多个条件。 这一次,将通过组合Borough和Location列来精确定位搜索。...图6 与只传递1个条件Borough==‘Manhattan’的SUMIF示例类似,在SUMIFS中,传递多个条件(根据需要)。在这个示例中,只需要两个。...虽然pandas中没有SUMIF函数,但只要我们了解这些值是如何计算的,就可以自己复制/创建相同功能的公式。

    9.2K30

    yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列

    yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列 【问题】当我们要用一个表的数据来查询另一个表的数据时,我们常常是打开文件复制数据源表的数据到当前文件新建一个数据表,再用伟大的VLookup...【解决方法】个人感觉这样不够快,所以想了一下方法,设计出如下的东东 【功能与使用】 设置好要取“数据源”的文件路径 data_key_col = "B" data_item_col = "V"为数据源的...key列与item列 this**是当前的数据表的要的东东 Sub getFiledata_to_activesheet() Dim mydic As Object, obj As Object...设定初始数据====================================、 file = "F:\家Excel学习\yhd-Excel\yhd-Excel-VBA\yhd-ExcelVBA根据条件查找指定文件的数据填写到当前工作表指定列...\201908工资变动名册表.xls" file_sht = "工资变动名册" data_key_col = "B" data_item_col = "V" '===要取的数据的列

    1.6K20

    30 个小例子帮你快速掌握Pandas

    df.isna().sum().sum() --- 0 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观察值(即行)。例如,下面的代码将选择居住在法国并且已经流失的客户。...第一个参数是位置的索引,第二个参数是列的名称,第三个参数是值。 19.where函数 它用于根据条件替换行或列中的值。默认替换值是NaN,但我们也可以指定要替换的值。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。...endswith函数根据字符串末尾的字符进行相同的过滤。 Pandas可以对字符串进行很多操作。

    10.8K10

    Pandas之实用手册

    pandas 的核心是名叫DataFrame的对象类型- 本质上是一个值表,每行和每列都有一个标签。...:使用数字选择一行或多行:也可以使用列标签和行号来选择表的任何区域loc:1.3 过滤使用特定值轻松过滤行。...例如,这是Jazz音乐家:以下是拥有超过 1,800,000 名听众的艺术家:1.4 处理缺失值许多数据集可能存在缺失值。假设数据框有一个缺失值:Pandas 提供了多种方法来处理这个问题。...最简单的方法是删除缺少值的行:fillna()另一种方法是使用(例如,使用 0)填充缺失值。1.5 分组使用特定条件对行进行分组并聚合其数据时。...通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。

    22110

    数据处理技巧 | 带你了解Pandas.groupby() 常用数据处理方法

    转换(Transformation)操作:执行一些特定于个别分组的数据处理操作,最常用的为针对不同分组情况选择合适的值填充空值; 筛选(Filtration)操作:这一数据处理过程主要是去除不符合条件的值...,如根据均值和特定值筛选数据。...test_data Splitting 分离操作 首先我们根据单一变量进行分组,如按照Team列进行分组,代码如下: grouped = test_dataest.groupby('Team') grouped...sum)等,下面我们通过实例解释:还是以上方数据为主,这次我们根据Year列进行分组: grouped = test_dataest.groupby("Year") 在对分组后的grouped对象,我们使用...同时计算多个结果 可能还有小伙伴问“能不能将聚合计算之后的新的结果列进行重命名呢?”,该操作在实际工作中经常应用的到,如:根据某列进行统计,并将结果重新命名。

    3.8K11

    Pandas与SQL的数据操作语句对照

    内容 选择行 结合表 条件过滤 根据值进行排序 聚合函数 选择行 SELECT * FROM 如果你想要选择整个表,只需调用表的名称: # SQL SELECT * FROM table_df...# Pandas table_df SELECT a, b FROM 如果你想从一个表中选择特定的列,列出你想要的列在双括号中: # SQL SELECT column_a, column_b...('Canada', 'USA') # Pandas table_df[table_df['column_a'].isin(['Canada', 'USA'])] 根据值进行排序 ORDER BY 单列...=False) ORDER BY 多列 如果您希望按多个列排序,请列出方括号中的列,并在方括号中的' ascending '参数中指定排序的方向。...GROUP BY column_a # Pandas table_df.groupby('column_a')['revenue'].mean() 总结 希望在使用Pandas处理数据时,本文可以作为有用的指南

    3.2K20
    领券