长期以来,我们一直被告知批处理和流(有界和无界系统)是正交技术——一种参考架构,其中流媒体为数据湖提供养料,仅此而已。...其中批处理用于检查流的有效性(lambda),或者我们需要将所有内容都考虑为流(kappa)。 但在战壕中,作为数据从业者,我们想要更多。...我们希望能够以简单的方式轻松整合现有企业数据源和高速/低延迟数据流。我们需要灵活地处理批处理 API 和流 API 以及无缝读取和写入它们的连接性。...这种架构没有一个花哨的名字——主要是因为它应该一直是这样运作的。因此,CSA 1.4 使构建这些数据产品变得轻而易举。...解锁新的用例和架构 借助 CSA 1.4 提供的新功能,新的用例以及降低延迟和加快上市时间的新功能成为可能。 分布式实时数据仓库——通过物化视图将流数据作为事实与批量数据作为维度进行连接。
本文介绍了 SparkSQL 和 Flink 对于批流支持的特性以及批流一体化支持框架的难点。在介绍批流一体化实现的同时,重点分析了基于普元 SparkSQL-Flow 框架对批流支持的一种实现方式。...目录: 1.SparkSQL 和 Flink 对于批流支持的特性介绍 2.基于SparkSQL-Flow的批量分析框架 3.基于SparkStreaming SQL模式的流式处理支持 4.对于批流一体化...四、对于批流一体化ETL的思考 Kettle ETL 工具 提到 ETL 不得不提 Kettle。批、流、数据源、多样性 大多数设计的ETL工具在他面前都相形见绌。...DataX 理论上也支持流处理,不过他的处理方式跟 Spark 类似,流是当做无限的批来处理。如果了解SpringBatch的话,DataX 更像是多线程的 SpringBatch 的架构。...SparkSQL-Flow 是基于Spark架构,天生具有分布式、本地计算、完全SQL开发的批流一体化计算框架。
; 简述大数据架构发展 Lambda 架构 Lambda 架构是目前影响最深刻的大数据处理架构,它的核心思想是将不可变的数据以追加的方式并行写到批和流处理系统内,随后将相同的计算逻辑分别在流和批系统中实现...,并且在查询阶段合并流和批的计算视图并展示给用户。...Lambda 架构的四个挑战 Lambda 架构非常复杂,在数据写入、存储、对接计算组件以及展示层都有复杂的子课题需要优化: 写入层上,Lambda 没有对数据写入进行抽象,而是将双写流批系统的一致性问题反推给了写入数据的上层应用...流批融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在流批框架中实现和运行的问题,不少计算引擎已经开始往流批统一的方向去发展,例如 Spark 和 Flink,从而简化lambda...Kappa架构 Kappa 架构由 Jay Kreps 提出,不同于 Lambda 同时计算流计算和批计算并合并视图,Kappa 只会通过流计算一条的数据链路计算并产生视图。
架构优化升级 基于以上问题,我们在进行大量技术调研选型及POC之后,我们主要做了如下2部分大的架构优化升级。...2.2 Apache Hudi 我们需要有一种能够兼容S3存储之后,既支持大量数据的批处理又支持增加数据的流处理的数据湖解决方案。...从而实现流批一体架构而不是典型的Lambda架构。...hoodie.parquet.small.file.limit hoodie.merge.allow.duplicate.on.inserts 其中:hoodie.combine.before.insert 决定是否对同一批次的数据按...总结 我司基于Hudi实现流批一体数据湖架构上线生产环境已有半年多时间,在引入Hudi之后我们在以下各个方面都带来了一定收益: •成本: 引入Hudi数据湖方案之后,实现了S3数据增量查询和增量更新删除
批处理是流处理的一种非常特殊的情况。在流处理中,我们为数据定义滑 动窗口或滚动窗口,并且在每次窗口滑动或滚动时生成结果。批处理则不同,我们定义一个全局窗口,所有的记录都属于同一个窗口。...这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。...因此,Flink 可以用同一个数据处理框架来处理无限数据流和有限数据流,并且不会牺牲性能。
由于Flink集成了批计算和流计算,因此可以使用Flink构建流批一体的系统架构,主要包含数据集成的流批一体架构、数仓架构的流批一体架构和数据湖的流批一体。...基于Flink流批一体整个数据集成的架构将不同。...在Flink流批一体架构的基础上,Flink CDC也是流批混合的,它可以先读取数据库全量数据同步到数仓中,然后自动切换到增量模式。...视频讲解如下:二、数仓架构的流批一体架构 &emsp目前主流数仓架构都是一套典型的离线数仓和一套新的实时数仓,但这两套技术栈是分开的。...数据湖存储与Flink结合,就可以将实时离线一体化的数仓架构演变成实时离线一体化的数据湖架构。数据湖的流批一体架构如下图所示。 视频讲解如下:
为解决上述问题,我们对第一代架构进行了演进和改善,构建了第二代批流一体架构(另外该架构升级也是笔者在饿了么进行架构升级的演进路线)。...2.2 第二代架构 2.2.1 批流一体平台的构建 首先将数据链路改造为实时架构,将Spark Structured Streaming(下文统一简称SS)与Flink SQL语法统一,同时实现与Flink...SQL语法大体上一致的批流一体架构,并且做了一些功能上的增强与优化。...新的模型特征处理采用批流一体的架构,上游对接数据源还是Kafka,模型主要有两个诉求 •支持增量读取方式减少模型更新的实效性•利用CDC来实现特征的回补 整个流程如下图 2.2.3 Hudi、Delta...新方案收益 通过链路架构升级,基于Flink/Spark + Hudi的新的流批一体架构带来了如下收益 •构建在Hudi上的批流统一架构纯SQL化极大的加速了用户的开发效率•Hudi在COW以及MOR不同场景的优化让用户有了更多的读取方式选择
我们初步实现了 Lookup Table(查询表)的支持,从而完善了流批结合的运算能力,例如实时数据补全的能力。...流批结合计算并非所有的数据都会经常变化,即使在实时计算中也是如此。在某些情况下,你可能需要用外部存储的静态数据来补全流数据。...例如,用户元数据可能存储在一个关系数据库中,流数据中只有实时变化的数据,需要连接流数据与数据库中的批量数据才能补全出完整的数据。...新的版本中,eKuiper 添加了新的 Lookup Table 概念,用于绑定外部静态数据,可以在规则中与流数据进行连接,实现流批结合的运算。使用查询表时,通常有三个步骤。1.创建数据流。...创建数据流时,可通过 DataSource 属性,配置数据流监听的 URL 端点,从而区分各个数据流的推送 URL。
4 月 2 日,我司 CEO 郭斯杰受邀在 Flink Forward San Francisco 2019 大会上发表演讲,介绍了 Flink 和 Pulsar 在批流应用程序的融合情况。...由于 Pulsar 采用了分层架构,它可以即时故障恢复、支持独立可扩展性和无需均衡的集群扩展。 Pulsar 的架构与其他发布-订阅系统类似,框架由主题组成,而主题是主要数据实体。...该框架也使用流作为所有数据的统一视图,分层架构允许传统发布-订阅消息传递,用于流式工作负载和连续数据处理;并支持分片流(Segmented Streams)和有界数据流的使用,用于批处理和静态工作负载。...Source Connectors)支持批式工作负载。...通过 Pulsar 的 Segmented Streams 方法和 Flink 在一个框架下统一批处理和流处理工作负载的几个步骤,可以应用多种方法融合两种技术,提供大规模的弹性数据处理。
以及在批流一体的数据处理需求中,Pulsar的系统架构在性能,扩展性,可用性等方面相对其他传统架构的消息系统的无可比拟的优势。...而且Pulsar这种分层架构显著降低了集群扩展和升级的复杂性,提高了系统可用性和可管理性。 此外,这种设计对容器是非常友好的,这使Pulsar成为流原生平台的理想选择。...不仅是消息系统而是流数据平台 我们上面讨论了Pulsar的分层架构如何为不同类型的工作负载提供高性能和可扩展性。但是Pulsar的分层架构带来的好处,远远不止这些。...存储无限大小的流 存储和计算分离的系统架构,让Pulsar可以被用作流数据平台。 这样用户和应用程序可以使用Pulsar并行访问流式计算中的最新数据和批量计算中的历史数据。...Presto integration with Apache Pulsar Pulsar还可以与其他数据处理引擎进行类似集成,来作为批流一体的数据存储平台,例如Apache Spark或Apache Flink
流批共享表 Delta的一大特点就是流批都可以对表进行写入和读取。通常而言,流写批读是最常见的场景,也存在流读流写的情况。...一个比较典型的场景是我们消费Kafka的日志,然后写入到delta里,接着我们可能会利用这个表进行交互式查询或者用于制作报表,这是一个典型的流写批读的场景。...如何实现流批共享表 当流式写入Delta常见的无非就三种可能: Upsert操作 纯新增操作 覆盖操作 当然可能还会存在更复杂的类型,我们需要单独探讨。...流批共享的好处 流批共享才是真的王道,因为我们大部分业务场景都是流写批读,比如讲MySQL的数据增量同步到Delta,然后无论ETL,交互式查询,报表都是批读。...所以,后面我们提到的更新删除等等,其实都同时适用于流和批操作。
在日常的工作中,我们会经常遇到这种数据处理的任务,那么对于这样的任务我们就可以采用数据流架构。 数据流架构 在实际工作中的流有很多种,最常见的就是I/O流,I / O缓冲区,管道等。...数据流架构的主要目的是实现重用和方便的修改。它适用于在顺序定义的输入和输出上进行一系列定义明确的独立数据转换或计算,例如编译器和业务数据处理应用程序。一般来说有三种基本的数据流结构。...顺序批处理 顺序批处理是最常见也是最基础的数据流架构。数据作为一个整体,会经过一个一个的处理单元,在上一个处理单元处理结束之后,才会进入到下一个处理单元。 我们看下顺序批处理的流程图: ?...这种架构的主要优点在于它的并发和增量执行。 这种模式下,最重要的组件就是过滤器,过滤器是独立的数据流转换器。它转换输入数据流的数据,对其进行处理,并将转换后的数据流写入管道以供下一个过滤器处理。...总结 上面我们介绍了几种数据流的架构方式,希望大家能够喜欢。
在日常的工作中,我们会经常遇到这种数据处理的任务,那么对于这样的任务我们就可以采用数据流架构。 数据流架构 在实际工作中的流有很多种,最常见的就是I/O流,I / O缓冲区,管道等。...数据流架构的主要目的是实现重用和方便的修改。 它适用于在顺序定义的输入和输出上进行一系列定义明确的独立数据转换或计算,例如编译器和业务数据处理应用程序。 一般来说有三种基本的数据流结构。...顺序批处理 顺序批处理是最常见也是最基础的数据流架构。数据作为一个整体,会经过一个一个的处理单元,在上一个处理单元处理结束之后,才会进入到下一个处理单元。...这种架构的主要优点在于它的并发和增量执行。 这种模式下,最重要的组件就是过滤器,过滤器是独立的数据流转换器。 它转换输入数据流的数据,对其进行处理,并将转换后的数据流写入管道以供下一个过滤器处理。...总结 上面我们介绍了几种数据流的架构方式,希望大家能够喜欢。
Flink如何做到流批一体 流批一体的理念 2020年,阿里巴巴实时计算团队提出“流批一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、...流和批业务场景的特点 Flink中认为所有一切都是流组成,即批式计算是流式计算的特列,有界的数据集是一种特殊的数据流。...不管哪种数据的集合,Flink认为都是流,所以理论上Flink可以用一套引擎架构来解决上述的两种场景的。...Apache Flink主要从以下模块来实流批一体化: 1.SQL层:支持bound和unbound数据集的处理; 2.DataStream API层统一,批和流都可以使用DataStream ApI来开发...; 3.ScheDuler 层架构统一,支持流批场景; 4.Failover Recovery层 架构统一,支持流批场景; 5.Shuffle Service 层架构统一,流批场景选择不同的Shuffle
Flink使用HiveCatalog可以通过批或者流的方式来处理Hive中的表。...这就意味着Flink既可以作为Hive的一个批处理引擎,也可以通过流处理的方式来读写Hive中的表,从而为实时数仓的应用和流批一体的落地实践奠定了坚实的基础。...值得注意的是,当以流的方式读取Hive表时,该参数的默认值是1m,即1分钟。当temporal join时,默认的值是60m,即1小时。...Temporal Join最新分区 对于一张随着时间变化的Hive分区表,Flink可以读取该表的数据作为一个无界流。...在实际应用中,通常有将实时数据流与 Hive 维表 join 来构造宽表的需求,Flink提供了Hive维表JOIN,可以简化用户使用的复杂度。
Flink批和流案例总结 关于Flink 批数据处理和流式数据处理案例有以下几个点需要注意: 一、Flink程序编写流程总结 编写Flink代码要符合一定的流程,Flink代码编写流程如下: a....三、Flink批和流 Java 和 Scala导入包不同 在编写Flink Java api代码和Flink Scala api代码处理批或者流数据时,引入的ExecutionEnvironment或StreamExecutionEnvironment...七、批和流对数据进行分组方法不同 批和流处理中都是通过readTextFile来读取数据文件,对数据进行转换处理后,Flink批处理过程中通过groupBy指定按照什么规则进行数据分组,groupBy中可以根据字段位置指定...八、关于DataSet Api (Legacy)软弃用 Flink架构可以处理批和流,Flink 批处理数据需要使用到Flink中的DataSet API,此API 主要是支持Flink针对批数据进行操作...,本质上Flink处理批数据也是看成一种特殊的流处理(有界流),所以没有必要分成批和流两套API,从Flink1.12版本往后,Dataset API 已经标记为Legacy(已过时),已被官方软弃用,
今天我们先从如何实现批流一体这个让很多机构头疼的问题讲起。 前言 量化金融的研究和实盘中,越来越多的机构需要根据高频的行情数据(L1/L2以及逐笔委托数据)来计算量价因子。...今天的推文为大家介绍如何使用DolphinDB发布的响应式状态引擎(Reactive State Engine)高效开发与计算带有状态的高频因子,实现流批统一计算。...批处理和流计算的代码实现是否高效?批和流能否统一代码?正确性校验是否便捷? 2、现有解决方案的优缺点 python pandas/numpy目前是研究阶段最常用的高频因子解决方案。...类似Flink批流统一的解决方案应运而生。Flink支持SQL和窗口函数,高频因子用到的常见算子在Flink中已经内置实现。因此,简单的因子用Flink实现会非常高效,运行性能也会非常好。...4、流批统一解决方案 金融高频因子的流批统一处理在DolphinDB中有两种实现方法。 第一种方法:使用函数或表达式实现金融高频因子,代入不同的计算引擎进行历史数据或流数据的计算。
❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。...❞ 前言 到底什么是流批一体? 批的来源?流的来源? 为什么要做流批一体? 从 数据开发的现状出发 探索理想中的流批一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ?...n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:批是在批式存储、处理引擎能力支持的角度提出的 ? ?...近几年的引擎能力(flink 等) 逐渐对流式数据处理、容错支持更好 数据可以做到秒、分钟级别延迟 结论:流是在流式存储、处理引擎能力支持的角度提出的 ? ? ? ? ? ? ?...博主理解的流批一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
01 整体思考 提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。...通过一套数据链路来同时满足流和批的数据处理需求是最理想的情况,即流批一体。此外我们认为流批一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。...对于同时实现计算统一和存储统一的场景,我们可以将计算的结果直接写入到流批统一的存储。我们选择了 Iceberg 作为流批统一的存储,因为它拥有良好的架构设计,比如不会绑定到某一个特定的引擎等。...而在流批一体模式下,开发模式变为了首先完成 SQL 的开发,其中包括逻辑的、物理的 DDL 的定义,以及它们之间的字段映射关系的指定,DML 的编写等,然后分别指定流批任务相关的配置,最后发布成流批两个任务...3.1 案例一 实时通用数据层 RDDM 流批一体化的建设。
领取专属 10元无门槛券
手把手带您无忧上云