首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

MOF乙酰基转移酶的时空表达启动转录因子网络调控红系命运

造血干细胞(HSCs)的自我更新和分化受转录因子和表观遗传调节因子的精细调控。这里,作者探索了组蛋白H4赖氨酸16乙酰转移酶MOF调节红细胞生成的机制。单细胞RNA测序和染色质免疫沉淀测序发现MOF通过动态募集染色质来影响红系发育轨迹,其单倍剂量不足会导致短期的HSC细胞群积聚。由MOF,RUNX1和GFI1B组成的调控网络对于红系命运至关重要。GFI1B充当Mof激活剂,它的表达对于特异性细胞诱导Mof表达是必需和定量的。Mof耗尽HSCs的可塑性可以通过下游效应Gata1的表达或通过组蛋白去乙酰基酶抑制剂的重塑乙酰化平衡来挽救。Mof表达的准确时机和剂量可充当前馈转录因子网络的变阻剂,从而保证沿红系命运的发展。

02

单细胞转录组分析—追踪移植后造血干细胞的分化

由于技术上的限制,移植的造血干细胞(HSCs)在预处理的宿主体内后不久的表现还没有被研究过。在这里,利用单细胞RNA测序,我们首先获得了28种造血细胞类型的基于转录组的分类。然后,我们将它们与功能分析相结合,跟踪受者移植后第一周内免疫表型纯化的造血干细胞的动态变化。根据我们的转录分类,大多数骨髓和脾脏中的HSCs成为多能祖细胞,偶尔也有一些HSCs产生巨核红细胞或髓系前体细胞。平行的体外和体内功能实验支持了在第一周没有大量HSC扩增的情况下稳健分化的范式。因此,这项研究揭示了早期在清髓受者中移植 HSC 的动力学和命运选择,对造血干细胞和其他干细胞的临床应用具有一定的指导意义。

02

Nat. Commun.| 通过将异质数据集投射到一个共同的细胞嵌入空间进行在线单细胞数据整合

本文介绍由清华大学生命科学学院生物信息学教育部重点实验室、北京结构生物学高级创新中心和生物结构前沿研究中心、合成与系统生物学研究中心的Qiangfeng Cliff Zhang通讯发表在 Nature Communications 的研究成果:作者提出了SCALEX,一种深度学习方法,通过将细胞投射到一个批次不变的、共同的细胞嵌入空间,以真正的在线方式(即不需要重新训练模型)整合单细胞数据。SCALEX在不同模式的基准单细胞数据集(scRNA-seq,scATAC-seq)上的表现大大优于在线iNMF和其他最先进的非在线整合方法,特别是对于有部分重叠的数据集,在保留真正的生物差异的同时准确地对齐类似细胞群。作者通过构建人类、小鼠和COVID-19患者的可持续扩展的单细胞图谱来展示SCALEX的优势,每个图谱都由不同的数据源组装而成,并随着每个新数据的出现而不断增长。在线数据整合能力和卓越的性能使SCALEX特别适合于大规模的单细胞应用。

02

Cell专题发表全球首批生命时空图谱,国家基因库发布时空组专辑数据库开启文献“可视化解读”新模式!

深圳华大生命科学研究院联合多家机构的研究者们,利用华大堪称“超广角百亿像素生命照相机”的时空组学技术Stereo-seq,首次绘制了四种模式生物胚胎发育或器官的时空图谱,包括和人的基因相似度高达80%的实验室明星小鼠、参与高中课本里著名的摩尔根杂交实验的果蝇、胚胎发育研究的重要模式生物斑马鱼和植物研究的“网红”拟南芥。这是首次从时间和空间维度上对生命发育过程中的基因和细胞变化过程进行超高精度解析,为认知器官结构、生命发育、人类疾病和物种演化提供全新方向。

01

脑肿瘤的影像组学:图像评估、定量特征描述和机器学习方法

影像组学描述了从影像图像中提取定量特征的一系列计算方法。其结果常常被用于评估影像诊断,预后以及肿瘤治疗。然而,在临床环境中,优化特征提取和快速获取信息的方法仍然面临重大挑战。同样重要的是,从临床应用角度,预测的影像组学特征必须明确地与有意义的生物学特征和影像科医生熟悉的定性成像特性相关联。在这里,我们使用跨学科的方法来强化影像组学的研究。我们通过提供基于新的临床见解的计算模型(例如,计算机视觉和机器学习)来探究脑肿瘤影像学研究(例如,潜在的图像意义)。我们概述了当前定量图像特征提取和预测方法,以及支持临床决策不同水平的可行的临床分类。我们还进一步讨论了机器学习未来可能面临的挑战和数据处理方法,以推进影像组学研究。本文发表在American Journal of Neuroradiology杂志。

03

Science:Julich-Brain:一个新的细胞结构水平的概率脑图谱

细胞结构是人类大脑在微结构上出现分离的基本生物原理,但就目前为止,还没有出现一个考虑到细胞层面及个体差异的人类脑图谱出现。本文介绍了Julich(德国于利希)实验室的最新研究成果——Julichu-Brain,这是一个包含皮层区域和皮层下核的细胞结构图的3D图谱。该图谱以概率的方式考虑了个体大脑之间的差异。除此以外,构建这样的一个脑图谱是需要大量的数据和工作量的,开发过程中需要开发嵌套的、相互依赖的工作流(working pipeline),使用该工具流可以检测大脑区域之间的边界、数据处理、追踪来源,以及灵活地执行不同工作流程,以处理不同空间尺度上的大量数据(这个工作流可能在日后起到更多的作用,开发更多的研究成果)。使用间隙映射的方法可以补充皮层映射,以实现完全的皮层覆盖。并且本图谱的开发考虑后续的动态进展,随着图谱绘制在不同方面的进展的调整,本图谱可以支持健康受试者和患者的神经影像学研究,以及建模和仿真,并可进行互操作,以连接其他脑图谱和资源。文章发表在Science杂志。

01

人肝肿瘤微环境单细胞图谱

肿瘤细胞与组成肿瘤微环境tumor microenvironment (TME) 的基质细胞之间的相互作用,影响了恶性细胞的生长。人的肝脏是肿瘤和转移的主要部位。在这些病理情况中,不同细胞类型间分子类型和细胞间相互作用还不清楚。在这篇文章里,作者对5例胆管癌或肝转移患者的恶性和邻近非恶性肝组织进行单细胞RNA测序和空间转录组分析。发现基质细胞表现出重复的,与患者无关的表达程序,并重建了突出肿瘤-基质相互作用的配体-受体图。通过结合激光捕获显微切割区域的转录组学,作者在非恶性肿瘤部位重建了肝细胞分区图谱,并表征了整个细胞在肿瘤微环境中的空间分布。这一研究为了解人类肝脏恶性肿瘤提供了数据支撑,并且揭示了潜在的干预措施。

02

空间单细胞图谱揭示脊椎动物咽部器官的演化起源

为了鉴定内层细胞成分和潜在的脊椎动物同源物,建立了单细胞分辨率的空间分辨图谱。scRNA-seq数据集由10017个有效细胞组成,使用Seurat工作流进行处理。初步定义了scRNA-seq数据集的细胞组成。多种细胞类型,包括免疫细胞、分泌性上皮细胞和血细胞,被发现具有细胞cluster特异性标记。对于Stereo-seq,通过空间条形码DNA纳米球(DNB)检测的表达谱与在文库构建中捕获的单链DNA染色光学图像对齐。根据不同的细胞分布特征,分别在组织密集区和稀疏区采用了方形划分和细胞分离两种细胞分离策略。使用这些方法,我们将DNB点分离成细胞unit,这代表了真实细胞形态的折衷反映。细胞分离后,在6个Stereo-seq切片中获得18371个细胞单位,并进行细胞类型注释。

02

Radiology:人工智能在神经肿瘤学中的新兴应用

随着计算机算法呈指数式增长,人工智能(AI)方法有望提高医学诊断和治疗方法的精确度。影像组学方法在神经肿瘤学领域中的应用一直并可能继续处于这场革命的前沿。应用于常规和高级神经肿瘤学MRI数据的各种AI方法已经能够识别弥漫性胶质瘤的浸润边缘,区分假性进展和真实进展,并且比日常临床实践中使用的方法更好地预测复发和生存率。影像基因组学还将促进我们对癌症生物学的理解,允许以高空间分辨率对分子环境进行无创采样,从而能够对潜在异质性细胞和分子过程的系统理解。通过提供空间和分子异质性的体内标记物,基于人工智能的影像组学和影像基因组学工具有可能将患者分为更精确的初始诊断和治疗途径,并在个性化医疗时代实现更好的动态治疗监测。尽管仍存在重大挑战,但随着人工智能技术的进一步发展和临床应用的验证,在影像学实践中将发生巨大变化。

03

缺氧协调胶质母细胞瘤内髓系细胞的空间分布

通过测量每个population的聚类系数,研究了髓系细胞在空间上与同类细胞的关联趋势。聚类系数是一种描述网络特性的统计数据,高值表明population形成了紧密相连的cluster,低值表明该群体的细胞在TME中连接弱,聚类更松散。在这一初步分析中,所有的髓系群体都表现出相似的聚类倾向,核心的TAM-Cd68和TAM-Int群体的聚类性明显更高。这些聚类值表明,大多数髓系population在TME中形成小的、弱连接的cluster。由于更丰富的population可能纯粹是偶然聚集在一起,随后修正了区域间population丰度差异的聚类系数。这表明,几乎所有的细胞群都表现出比偶然预期更多的聚集性。值得注意的是,TAM-Supp细胞在边缘显示出明显更密集的聚集。在边缘和核心区之间,聚类模式是保守的。测量分类性(网络中种群与不同种群的同类种群相连接的趋势的描述性统计数据)同样表明,细胞对与同类种群的细胞相连接表现出微弱但积极的偏好,这在边缘和核心区域之间是相似的。总的来说,这些数据表明,不同的髓系细胞群在TME中分离并形成松散的同型cluster,这种分离的生物学驱动因素大多独立于肿瘤边缘或核心的更广泛位置。

00

Science:人类神经科学中的功能基因组学和系统生物学

由于对资源建设和工具开发的强大的财政和智力支持,神经科学研究已经进入了神经基因组学领域的关键发展阶段。以前的组织异质性的挑战已经遇到了技术的应用,可以让我们研究单个细胞尺度的功能轮廓。此外,以细胞类型特异性的方式干扰基因、基因调控元件和神经元活性的能力已经与基因表达研究相结合,以在系统水平上揭示基因组的功能基础。虽然这些见解必须基于模型系统,但由于人类遗传学、大脑成像和组织收集方面的进步,我们现在有机会将这些方法应用于人类和人体组织中。我们承认,在我们将模型系统中开发的基因组工具应用于人类神经科学的程度上,可能总是有限制的;然而,正如我们在这个角度所描述的,神经科学领域现在已经为解决这一雄心勃勃的挑战奠定了最佳基础。将系统级的网络分析应用于这些数据集,将有助于对人类神经基因组学的更深入的理解,否则,这是无法从直接可观察到的现象中实现的。

01

Nature Genetics | 基于人工智能神经网络的基因组解读系统Nvwa并揭示细胞命运决定共性规律

本文介绍由浙江大学基础医学院的郭国骥、韩晓平和良渚实验室的王晶晶共同通讯发表在 Nature Genetics 的研究成果:目前研究人员在生成和分析基因组方面做了大量努力,但大多数物种仍缺乏预测基因调控和细胞命运决定的遗传模型。在该研究中,作者利用自主构建的高通量单细胞测序平台Microwell-seq绘制了斑马鱼、果蝇和蚯蚓的全身单细胞转录组图谱,并探究了八种代表性的后生动物细胞类型的跨物种可比性,揭示了脊椎动物细胞类型保守的调控程序。作者开发了一种基于深度学习的模型Nvwa,用于在单细胞分辨率下预测基因表达和识别调控序列。作者还系统地比较了细胞类型特异性转录因子,以揭示脊椎动物和无脊椎动物细胞类型的保守遗传调控。该工作有助于为研究不同生物系统的调控语法提供宝贵的资源和新的策略。

02
领券