首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用于三重损失训练的自定义精度函数

三重损失训练是一种用于训练深度学习模型的损失函数,它在人脸识别、目标检测和语义分割等任务中得到广泛应用。自定义精度函数是指根据具体任务需求,自定义定义的评估模型精度的函数。

三重损失训练的目标是通过最小化同类样本之间的距离,最大化不同类样本之间的距离,来学习到具有良好特征表达能力的特征空间。它由三个部分组成:锚点样本(Anchor)、正样本(Positive)和负样本(Negative)。其中,锚点样本和正样本属于同一类别,而负样本属于不同类别。

自定义精度函数可以根据具体任务的需求来定义。例如,在人脸识别任务中,可以使用准确率(Accuracy)作为评估指标。在目标检测任务中,可以使用平均精度均值(mAP)作为评估指标。在语义分割任务中,可以使用像素准确率(Pixel Accuracy)或平均交并比(Mean Intersection over Union,mIoU)作为评估指标。

对于三重损失训练的自定义精度函数,可以根据具体任务需求来选择合适的评估指标。例如,在人脸识别任务中,可以使用准确率(Accuracy)来评估模型的性能。在目标检测任务中,可以使用平均精度均值(mAP)来评估模型的性能。在语义分割任务中,可以使用像素准确率(Pixel Accuracy)或平均交并比(mIoU)来评估模型的性能。

腾讯云提供了一系列与云计算相关的产品,可以帮助开发者进行三重损失训练和自定义精度函数的实现。例如,腾讯云的人工智能平台AI Lab提供了丰富的深度学习工具和算法库,可以支持模型训练和评估。此外,腾讯云还提供了弹性计算、存储、数据库等基础设施服务,以及云原生解决方案和网络安全服务,为开发者提供全面的云计算支持。

更多关于腾讯云相关产品和产品介绍的信息,可以访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【翻译】DoesWilliam Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence

    知识图谱能够提供重要的关系信息,在各种任务中得到了广泛的应用。然而,在KGs中可能存在大量的噪声和冲突,特别是在人工监督较少的自动构造的KGs中。为了解决这一问题,我们提出了一个新的置信度感知(confidence-aware)知识表示学习框架(CKRL),该框架在识别KGs中可能存在的噪声的同时进行有置信度的知识表示学习。具体地说,我们在传统的基于翻译的知识表示学习方法中引入了三元组置信度。为了使三次置信度更加灵活和通用,我们只利用KGs中的内部结构信息,提出了同时考虑局部三次和全局路径信息的三次置信度。在知识图噪声检测、知识图补全和三重分类等方面对模型进行了评价。实验结果表明,我们的置信度感知模型在所有任务上都取得了显著和一致的改进,这证实了我们的CKRL模型在噪声检测和知识表示学习方面的能力。

    01

    【翻译】HyNet: Learning Local Descriptor with Hybrid Similarity Measure and Triplet Loss

    最近的研究表明,局部描述符学习得益于L2归一化的使用,然而,文献中缺乏对这种效应的深入分析。在本文中,我们研究了L2归一化如何影响训练期间的反向传播描述符梯度。根据我们的观察,我们提出了一个新的局部描述符HyNet,它可以在匹配方面带来最先进的结果。HyNet引入了一种混合相似性度量,用于度量三态边际损失,一个正则化项约束描述符范数,以及一种新的网络体系结构,该体系结构对所有中间特征映射和输出描述符执行L2正则化。在包括补丁匹配、验证和检索在内的标准基准上,HyNet大大超过了以前的方法,并且在3D重建任务上优于完整的端到端方法。代码和模型可在https://github.com/yuruntian/HyNet上找到。

    02

    AAAI'22 | "简单"的无监督图表示学习

    今天给大家介绍的是电子科技大学石小爽教授团队于2022年发表在AAAI上的一篇论文:“Simple Unsupervised Graph Representation Learning ”。作者提出了一种简单的无监督图表示学习方法来进行有效和高效的对比学习。具体而言,通过构造多重损失探索结构信息与邻域信息之间的互补信息来扩大类间变化,并通过增加一个上限损失来实现正嵌入与锚嵌入之间的有限距离来减小类内变化。因此,无论是扩大类间变异还是减少类内变异,都能使泛化误差很小,从而得到一个有效的模型。此外,作者的方法消除了以往图对比学习方法中广泛使用的数据增强和鉴别器,同时可以输出低维嵌入,从而得到一个高效的模型。在各种真实数据集上的实验结果表明,与最先进的方法相比,该方法是有效和高效的。

    01

    使用三重损失和孪生神经网络训练大型类目的嵌入表示

    来源:Deephub Imba本文约4500字,建议阅读5分钟本文描述了一种通过在网站内部的用户搜索数据上使用自监督学习技术来训练高质量的可推广嵌入的方法。 大型网站类目目录的数量很大,一般都无法进行手动标记,所以理解大型目录的内容对在线业务来说是一个重大挑战,并且这使得对于新产品发现就变得非常困难,但这个问题可以通过使用自监督神经网络模型来解决。 在过去我们一直使用人工在系统中进行产品的标记,这样的确可以解决问题但是却耗费了很多人力的成本。如果能够创建一种机器学习为基础的通用的方式,在语义上自动的关联产品

    03

    【EMNLP 2019】Sentence-BERT

    在许多NLP任务(特别是在文本语义匹、文本向量检索等)需要训练优质的句子表示向量,模型通过计算两个句子编码后的Embedding在表示空间的相似度来衡量这两个句子语义上的相关程度,从而决定其匹配分数。尽管基于BERT在诸多NLP任务上取得了不错的性能,但其自身导出的句向量(【CLS】输出的向量、对所有输出字词token向量求平均)质量较低。由于BERT输出token向量预训练中,后面接的的分类的任务。所以其实输出token向量并不适合作为生成句子表示。美团一篇论文中提到,发现以这种方式编码,句子都倾向于编码到一个较小的空间区域内,这使得大多数的句子对都具有较高的相似度分数,即使是那些语义上完全无关的句子对,并将此称为BERT句子表示的“坍缩(Collapse)”现象:

    02

    预训练句子表征——【EMNLP 2019】Sentence-BERT

    在许多NLP任务(特别是在文本语义匹、文本向量检索等)需要训练优质的句子表示向量,模型通过计算两个句子编码后的Embedding在表示空间的相似度来衡量这两个句子语义上的相关程度,从而决定其匹配分数。尽管基于BERT在诸多NLP任务上取得了不错的性能,但其自身导出的句向量(【CLS】输出的向量、对所有输出字词token向量求平均)质量较低。由于BERT输出token向量预训练中,后面接的的分类的任务。所以其实输出token向量并不适合作为生成句子表示。美团一篇论文中提到,发现以这种方式编码,句子都倾向于编码到一个较小的空间区域内,这使得大多数的句子对都具有较高的相似度分数,即使是那些语义上完全无关的句子对,并将此称为BERT句子表示的“坍缩(Collapse)”现象:

    02

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    目前为止,我们只是使用了TensorFlow的高级API —— tf.keras,它的功能很强大:搭建了各种神经网络架构,包括回归、分类网络、Wide & Deep 网络、自归一化网络,使用了各种方法,包括批归一化、dropout和学习率调度。事实上,你在实际案例中95%碰到的情况只需要tf.keras就足够了(和tf.data,见第13章)。现在来深入学习TensorFlow的低级Python API。当你需要实现自定义损失函数、自定义标准、层、模型、初始化器、正则器、权重约束时,就需要低级API了。甚至有时需要全面控制训练过程,例如使用特殊变换或对约束梯度时。这一章就会讨论这些问题,还会学习如何使用TensorFlow的自动图生成特征提升自定义模型和训练算法。首先,先来快速学习下TensorFlow。

    03

    ICML2020 | Self-PU learning:把三个自监督技巧扔进PU learning

    今天给大家介绍的是德州农工大学Xuxi Chen等人在ICML2020上发表的一篇名为“Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training”的文章。许多现实世界的应用领域必须解决Positive-Unlabeled (PU) learning问题,即从大量的无标记数据和少数有标记的正示例中训练一个二分类器。虽然目前最先进的方法采用了重要性重加权来设计各种风险估计器,但它们忽略了模型本身的学习能力,而这本来可以提供可靠的监督。这促使作者提出了一种新型的Self-PU learning框架,该框架将PU learning与self-training无缝结合。self- PU learning包含了三个self导向的模块:自适应地发现和增强确信的正/负例子的self-paced训练算法; self-calibrated实例感知损失;以及一个引入教师-学生学习作为PU学习有效正则化的self-distillation方案。作者在通用PU learning基准(MNIST和CIFAR-10)上展示了Self-PU的最先进性能,与最新的竞争对手相比具有优势。此外,还研究了PU学习在现实世界中的应用,即对阿尔茨海默病的脑图像进行分类。与现有方法相比,Self-PU在著名的阿尔茨海默病神经成像(ADNI)数据库上获得了显著改进的结果。

    03

    最新SOTA!隐式学习场景几何信息进行全局定位

    全局视觉定位是指利用单张图像,根据已有的地图,估计相机的绝对姿态(位置和方向)。这种技术可以应用于机器人和增强/虚拟现实等领域。这篇文章的主要贡献是提出了一种利用姿态标签来学习场景的三维几何信息,并利用几何信息来估计相机姿态的方法。具体来说,作者设计了一个学习模型,它可以从图像中预测两种三维几何表示(X, Y, Z坐标),一种是相机坐标系下的,另一种是全局坐标系下的。然后,通过将这两种表示进行刚性对齐,就可以得到与姿态标签匹配的姿态估计。这种方法还可以引入额外的学习约束,比如最小化两种三维表示之间的对齐误差,以及全局三维表示和图像像素之间的重投影误差,从而提高定位精度。在推理阶段,模型可以实时地从单张图像中估计出场景的三维几何信息,并通过对齐得到姿态。作者在三个常用的视觉定位数据集上进行了实验,进行了消融分析,并证明了他们的方法在所有数据集上都超过了现有的回归方法的姿态精度,并且可以实时地从单张图像中估计出场景的三维几何信息,并通过对齐得到姿态。

    02
    领券