首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用零填充3D列表中的缺失值,以创建3D numpy数组

要用零填充3D列表中的缺失值,可以使用NumPy库来创建3D的numpy数组,并使用numpy.nan_to_num()函数将缺失值替换为零。

首先,导入NumPy库:

代码语言:txt
复制
import numpy as np

然后,创建一个3D列表,例如:

代码语言:txt
复制
my_list = [[[1, 2, np.nan], [4, np.nan, 6]], [[7, 8, 9], [10, np.nan, 12]]]

接下来,将3D列表转换为3D的numpy数组:

代码语言:txt
复制
my_array = np.array(my_list)

现在,使用numpy.nan_to_num()函数将缺失值替换为零:

代码语言:txt
复制
filled_array = np.nan_to_num(my_array, nan=0)

最后,打印填充后的3D numpy数组:

代码语言:txt
复制
print(filled_array)

这样就可以得到用零填充缺失值后的3D numpy数组。

注意:以上代码示例中,np.nan表示缺失值。numpy.nan_to_num()函数将缺失值替换为指定的值,这里我们将其替换为零。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

一篇文章学会Matplotlib

以下是更多的Matplotlib语法和细节: 三维绘图: Matplotlib中还有许多用于创建3D图形的功能,其中最常见的是使用mplot3d工具包。...8, 9]]) #用numpy模块创建一个3x3的矩阵并赋值 heatmap = plt.pcolor(data, cmap=plt.cm.Blues) #调用pcolor()方法为数据生成颜色热图...二维NumPy数组data存储数据,而’plt.pcolor()'函数用于创建矩阵颜色图。通过添加xticks()和yticks()函数、并使用值范围(0.5- len + 0.5)调整刻度的位置。...Z = np.sin(np.sqrt(X**2 + Y**2)) # 根据X和Y数组生成Z数组 # 在3D坐标系中绘制3D曲面 ax.plot_surface(X, Y, Z, cmap=plt.cm.Blues...100) #使用numpy模块中的np.linspace()函数生成一系列等间隔样本点 y = np.sin(x) # 创建新的图形并绘制sin函数 fig = plt.figure() #创建一个新的图形

7910

【深度学习】 Python 和 NumPy 系列教程(十四):Matplotlib详解:1、2d绘图(下):箱线图、热力图、面积图、等高线图、极坐标图

本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。..., r) # 添加标题 plt.title("极坐标图示例") # 显示图形 plt.show() 创建角度数据和半径数据:通过使用np.linspace函数生成一系列均匀分布的角度值,并使用某种函数关系生成对应的半径值...使用plt.polar(theta, r)绘制极坐标图,其中theta表示角度值,r表示对应角度的半径值。

16710
  • 【深度学习】 Python 和 NumPy 系列教程(廿三):Matplotlib详解:2、3d绘图类型(9)3D等高线投影图(3D Contour Projection Plot)

    本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...通过使用meshgrid函数,创建一个网格以覆盖整个x和y的范围。 通过应用一个函数(这里是sin)来计算z轴的值,得到了一个与x和y对应的z值的网格。...创建一个3D图像对象,并指定了投影类型为'3d'。 生成等高线投影图:使用contour函数,传入x、y、z值的网格以及所选的颜色映射(这里是'viridis')

    10810

    【深度学习】 Python 和 NumPy 系列教程(十六):Matplotlib详解:2、3d绘图类型(2)3D散点图(3D Scatter Plot)

    本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...创建了一个3D图形对象,并将其添加到子图中。 使用ax.scatter函数创建了3D散点图。 我们通过传递x、y和z参数来指定每个散点的位置。...c参数指定了散点的颜色,可以使用一个数值数组来表示不同的颜色值。 cmap参数指定了颜色映射,这里我们使用了viridis颜色映射。 marker参数指定了散点的形状,这里我们使用了圆形。

    10710

    针对SAS用户:Python数据分析库pandas

    在SAS例子中,我们使用Data Step ARRAYs 类同于 Series。 以创建一个含随机值的Series 开始: ? 注意:索引从0开始。...SAS/IML更接近的模拟NumPy数组。但SAS/IML 在这些示例的范围之外。 ? 一个Series可以有一个索引标签列表。 ? Series由整数值索引,并且起始位置是0。 ?...它们是: 方法 动作 isnull() 生成布尔掩码以指示缺失值 notnull() 与isnull()相反 drona() 返回数据的过滤版本 fillna() 返回填充或估算的缺失值的数据副本 下面我们将详细地研究每个方法...缺失值对于数值默认用(.)表示,而字符串变量用空白(‘ ‘)表示。因此,两种类型都需要用户定义的格式。...我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。 ? ?

    12.1K20

    【深度学习】 Python 和 NumPy 系列教程(十七):Matplotlib详解:2、3d绘图类型(3)3D条形图(3D Bar Plot)

    本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。...通过使用np.meshgrid函数创建了一个二维网格,将x和y数组扩展为与z数组相同的维度。 创建了一个3D图形对象,并将其添加到子图中。 使用ax.bar3d函数绘制了3D条形图。

    13410

    【深度学习】 Python 和 NumPy 系列教程(十九):Matplotlib详解:2、3d绘图类型(5)3D等高线图(3D Contour Plot)

    本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。...使用ax.set_xlabel、ax.set_ylabel和ax.set_zlabel函数设置了坐标轴的标签。 运行示例代码后,将看到一个3D等高线图,其中等高线的位置和形状由z数组确定。

    13710

    【深度学习】 Python 和 NumPy 系列教程(十八):Matplotlib详解:2、3d绘图类型(4)3D曲面图(3D Surface Plot)

    本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。...通过使用np.linspace函数在指定范围内生成100个均匀分布的数据点。 我们创建了一个3D图形对象,并将其添加到子图中。

    11410

    ApacheCN 数据科学译文集 20211109 更新

    NumPy 秘籍中文第二版 零、前言 一、使用 IPython 二、高级索引和数组概念 三、掌握常用函数 四、将 NumPy 与世界的其他地方连接 五、音频和图像处理 六、特殊数组和通用函数 七、性能分析和调试...基础知识 零、前言 一、NumPy 简介 二、NumPy ndarray对象 三、使用 NumPy 数组 四、NumPy 核心和子模块 五、NumPy 中的线性代数 六、NumPy 中的傅立叶分析...Pandas 学习手册中文第二版 零、前言 一、Pandas 与数据分析 二、启动和运行 Pandas 三、用序列表示单变量数据 四、用数据帧表示表格和多元数据 五、数据帧的结构操作 六、索引数据...数据分析实用指南 零、前言 一、配置 Python 数据分析环境 二、探索 NumPy 三、NumPy 数组上的运算 四、Pandas 很有趣!...七、以不同格式保存图形 八、开发交互式绘图 九、在图形用户界面中嵌入绘图 十、使用mplot3d工具包绘制 3D 图形 十一、使用axisartist工具包 十二、使用axes_grid1工具包 十三、

    4.9K30

    Python数据分析笔记——Numpy、Pandas库

    Numpy基础 1、创建ndarray数组 使用array函数,它接受一切序列型的对象,包括其他数组,然后产生一个新的Numpy数组。 嵌套序列将会被转换成一个多维数组。...也可以在创建Series的时候为值直接创建索引。 b、通过字典的形式来创建Series。 (3)获取Series中的值 通过索引的方式选取Series中的单个或一组值。...(2)创建DataFrame: 最常用的一种方法是直接传入一个等长列表或numpy数组组成的字典: 结果DataFrame会自动加上索引(添加方法与Series一样),且全部列会被有序排列。...对于缺失值除使用fill_value的方式填充特定值以外还可以使用method=ffill(向前填充、即后面的缺失值用前面非缺失值填充)、bfill(向后填充,即前面的缺失值用后面的非缺失值填充)。...也可以给fillna函数一个字典,就可以实现对不同的列填充不同的值。 Df.fillna({1:0.5,3:-1})——1列的缺失值用0.5填充,3列的缺失值用-1填充。

    6.4K80

    【深度学习】 Python 和 NumPy 系列教程(廿一):Matplotlib详解:2、3d绘图类型(7)3D表面投影图(3D Surface Projection Plot)

    Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。

    11210

    【深度学习】 Python 和 NumPy 系列教程(二十):Matplotlib详解:2、3d绘图类型(6)3D向量场图(3D Vector Field Plot)

    本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。...通过使用np.linspace函数在指定范围内生成10个均匀分布的数据点。 创建了一个3D图形对象,并将其添加到子图中。 使用ax.quiver函数绘制了3D向量场图。

    12610

    【深度学习】 Python 和 NumPy 系列教程(廿二):Matplotlib详解:2、3d绘图类型(8)3D饼图(3D Pie Chart)

    Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。

    9910

    数据处理(三)| 深入数据预处理:提升机器学习模型性能的关键步骤

    常出现在用户年龄缺失、商品价格为空、传感器数据断档。常见的处理方法包括:均值填充:适用于数值型数据,但对离群值敏感。中位数填充:适合存在离群值的数据。众数填充:适用于类别型数据。...& Pandas高效技巧NumPy:科学计算基础NumPy是Python中高效处理数值计算的基础库,核心是多维数组(ndarray),比Python原生列表快百倍!...创建数组:从列表到矩阵import numpy as np # 一维数组 arr1d = np.array([1, 2, 3, 4]) # 二维数组(矩阵) arr2d = np.array([...:不只是fillna和dropna场景:根据业务逻辑填充缺失值。...”错误做法:在整个数据集上计算均值并填充缺失值。

    12410

    python数据分析——数据预处理

    缺失值替换/填充 对于数据中缺失值的处理,除了进行删除操作外,还可以进行替换和填充操作,如均值填补法,近邻填补法,插值填补法,等等。本文介绍填充缺失值的fillna()方法。...对于Series对象,fillna()函数可以用来填充缺失值或者替换特定的值。 对于DataFrame对象,fillna()函数可以用来填充DataFrame中的所有缺失值或者指定列中的缺失值。...method:填充缺失值的方法,可以是ffill(用前一个非缺失值填充)、bfill(用后一个非缺失值填充)或者None(不填充)。 axis:指定填充的轴,可以是行轴(0)或者列轴(1)。...示例代码: import pandas as pd # 创建一个Series对象 s = pd.Series([1, None, 3, 4, None, 6]) # 用0填充缺失值 s.fillna...在数据分析的过程中,对异常值的处理通常包括以下3种方法: 最常用的方式是删除。 将异常值当缺失值处理,以某个值填充。 将异常值当特殊情况进行分析,研究异常值出现的原因。

    5300

    【深度学习】 Python 和 NumPy 系列教程(廿四):Matplotlib详解:2、3d绘图类型(10)3D箱线图(3D Box Plot)

    Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。

    11310

    pandas(一)

    ']  支持切片操作 pd.Series(data,index=index) data可以是列表或numpy数组 pd.Series([2,4,6]) 也可以是标量,创建时会重复填充到每个索引上 pd.Series...':data,'age':[1,2,3,4])  *注意此处data是前面series创建好的有索引的对象 通过numpy创建 pd.DataFrame(np.random.rand(3,2),       ...通用函数pandas也适用 当用两个series对象创建dataframe对象时,会取两个对象的并集,没有的用nan代替 两个dataframe运算时也适用 也可以自定义缺失值 a=pd.DataFrame...data.fillna(0)  缺失值用0填充   data.fillna(method='ffill')  用缺失值前面的有效值填充,bfill用后面的有效值填充   data.fillna(method...='ffill',axis=1)  每行的前面有效值填充   如果缺失值前面没有值,那么仍然是缺失值

    98520

    【深度学习】 Python 和 NumPy 系列教程(十五):Matplotlib详解:2、3d绘图类型(1):线框图(Wireframe Plot)

    Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。 无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。

    9310
    领券