首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas创建DataFrame对象的几种常用方法

DataFrame是pandas常用的数据类型之一,表示带标签的可变二维表格。本文介绍如何创建DataFrame对象,后面会陆续介绍DataFrame对象的用法。...pandas as pd 接下来就可以通过多种不同的方式来创建DataFrame对象了,为了避免排版混乱影响阅读,直接在我制作的PPT上进行截图。...生成后面创建DataFrame对象时用到的日期时间索引: ? 创建DataFrame对象,索引为2013年每个月的最后一天,列名分别是A、B、C、D,数据为12行4列随机数。 ?...根据字典来创建DataFrame对象,字典的“键”作为DataFrame对象的列名,其中B列数据是使用pandas的date_range()函数生成的日期时间,C列数据来自于使用pandas的Series...除此之外,还可以使用pandas的read_excel()和read_csv()函数从Excel文件和CSV文件中读取数据并创建DateFrame对象,后面会单独进行介绍。

3.6K80

Pandas 中最常用的 7 个时间戳处理函数

sklern库中也提供时间序列功能,但 Pandas 为我们提供了更多且好用的函数。 Pandas 库中有四个与时间相关的概念 日期时间:日期时间表示特定日期和时间及其各自的时区。...日期偏移:日期偏移有助于从当前日期计算选定日期,日期偏移量在 pandas 中没有特定的数据类型。 时间序列分析至关重要,因为它们可以帮助我们了解随着时间的推移影响趋势或系统模式的因素。...dataframe。...在创建dataframe并将其映射到随机数后,对列表进行切片。 最后总结,本文通过示例演示了时间序列和日期函数的所有基础知识。...建议参考本文中的内容并尝试pandas中的其他日期函数进行更深入的学习,因为这些函数在我们实际工作中非常的重要。 作者:Amit Chauhan

2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    我们可以用多种不同的方式构建一个DataFrame,但对于少量的值,通常将其指定为 Python 字典会很方便,其中键是列名,值是数据。...列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...过滤 在 Excel 中,过滤是通过图形菜单完成的。 可以通过多种方式过滤数据框,其中最直观的是使用布尔索引。...在 Pandas 中提取单词最简单的方法是用空格分割字符串,然后按索引引用单词。请注意,如果您需要,还有更强大的方法。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    pandas中的.update()方法

    在Pandas中,update()方法用于将一个DataFrame或Series对象中的值更新为另一个DataFrame或Series对象中的对应值。...这个方法可以用来在原地更新数据,而不需要创建一个新的对象。 update()方法有几个参数,其中最重要的是other参数,它指定了用来更新当前对象的另一个DataFrame或Series对象。...overwrite:一个布尔值,指定是否要覆盖当前对象中的值。默认为True,表示用other对象中的值完全替换当前对象中的值;如果设置为False,则只会替换NaN值。...让我们从需要更新开始,我们的数据如下: 我们想要将下面的数据匹配到原始数据上: 如果直接使用,看看结果是什么: df.update(df1) df 所有单元格都将被替换,除非我们的新DF有空,...overwrite参数 除了空值所有单元格都被替换了,这时因为.update()只是假设新数据更相关。

    32140

    快乐学习Pandas入门篇:Pandas基础

    寄语:本文对Pandas基础内容进行了梳理,从文件读取与写入、Series及DataFrame基本数据结构、常用基本函数及排序四个模块快速入门。同时,文末给出了问题及练习,以便更好地实践。...__version__pd.set_option('display.max_columns', None) 读取 Pandas常用的有以下三种文件: csv文件 txt文件 xls/xlsx文件 读取文件时的注意事项...列的添加 方法1:直接新增; df1['B'] = list('abc') 方法2:用assign方法,不会改变原DataFrame; df1.assign(C=pd.Series(list('def'...练习 练习1: 现有一份关于美剧《权力的游戏》剧本的数据集,请解决以下问题: (a)在所有的数据中,一共出现了多少人物? (b)以单元格计数(即简单把一个单元格视作一句),谁说了最多的话?...(c)以单词计数,谁说了最多的单词?

    2.4K30

    Python进阶之Pandas入门(四) 数据清理

    引言 Pandas是数据分析中一个至关重要的库,它是大多数据项目的支柱。如果你想从事数据分析相关的职业,那么你要做的第一件事情就是学习Pandas。...清理列索引 很多时候,数据集将具有包含符号、大小写单词、空格和拼写的冗长列名。为了使通过列名选择数据更容易,我们可以花一点时间来清理它们的名称。...处理空值有两种选择: 去掉带有空值的行或列 用非空值替换空值,这种技术称为imputation 让我们计算数据集的每一列的空值总数。...第一步是检查我们的DataFrame中的哪些单元格是空的: print (movies_df.isnull()) 运行结果: ?...注意isnull()返回一个DataFrame,其中每个单元格是真还是假取决于该单元格的null状态。

    1.8K60

    针对SAS用户:Python数据分析库pandas

    缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...缺失值对于数值默认用(.)表示,而字符串变量用空白(‘ ‘)表示。因此,两种类型都需要用户定义的格式。...可以插入或替换缺失值,而不是删除行和列。.fillna()方法返回替换空值的Series或DataFrame。下面的示例将所有NaN替换为零。 ? ?...正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。...NaN被上面的“上”列替换为相邻单元格。下面的单元格将上面创建的DataFrame df2与使用“后向”填充方法创建的数据框架df10进行对比。 ? ?

    12.1K20

    pandas处理字符串方法汇总

    hello pandas!' # 4、字符串替换 y.replace('p','P') # 小写p用大写P替换 'hello Python! hello Pandas!'...import pandas as pd Pandas改变Object数据类型 Object类型是我们在pandas中常用的字符串类型。...向量化操作字符串 使用字符串的str属性 Pandas中内置了等效python的字符串操作方法:str属性 df = pd.DataFrame(["Python Gudio 1991","Java Gosling...: Language, dtype: object str.replace:正则表达式中的替换功能 # 将字母J和Python整个字符串替换成?...str.index:查找指定字符在字符串中第一次出现的位置(索引号) str.rindex:查找指定字符在字符串中最后一次出现的位置(索引号) str.capitalize:将字符串中的单词的第一个字母变成大写

    46120

    Pandas 2.2 中文官方教程和指南(四)

    在 pandas 中提取单词的最简单方法是通过空格拆分字符串,然后按索引引用单词。注意,如果需要的话,还有更强大的方法。...Excel DataFrame 工作表 Series 列 Index 行标题 行 行 NaN 空单元格 DataFrame 在 pandas 中,DataFrame 类似于 Excel 的工作表。...过滤 在 Excel 中,过滤是通过一个图形菜单完成的。 DataFrame 可以以多种方式进行过滤;其中最直观的是使用布尔索引。...在 pandas 中提取单词的最简单方法是通过空格拆分字符串,然后按索引引用单词。请注意,如果需要,还有更强大的方法。...在 pandas 中提取单词的最简单方法是通过空格拆分字符串,然后按索引引用单词。请注意,如果需要,还有更强大的方法。

    31710

    我用Python展示Excel中常用的20个操

    前言 Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作...Pandas 在Pandas中可以结合NumPy生成由指定随机数(均匀分布、正态分布等)生成的矩阵,例如同样生成10*2的0—1均匀分布随机数矩阵为,使用一行代码即可:pd.DataFrame(np.random.rand...vlookup 说明:利用VLOOKUP查找数据 Excel VLOOKUP算是EXCEL中最核心的功能之一了,我们用一个简单的数据来进行示例 ?...Pandas 在Pandas中没有现成的vlookup函数,所以实现匹配查找需要一些步骤,首先我们读取该表格 ? 接着将该dataframe切分为两个 ?...,用Excel制作更加方便,而有些操作比如数据的分组、计算等,因Pandas可以与NumPy等其他优秀的Python库结合而显得更加强大,所以我们在处理数据时也需要正确选择使用的工具!

    5.6K10

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    Medium上一位博主就分享了他一步步用Python替换掉十年前的“老情人”Excel的过程,一起来学习一下吧! ?...,我们来看一下最常用的一些参数。...2、一些重要的Pandas read_excel选项 ? 如果默认使用本地文件的路径,用“\”表示,接受用“/”表示,更改斜杠可以将文件添加到Python文件所在的文件夹中。...简单的数据透视表,显示SepalWidth的总和,行列中的SepalLength和列标签中的名称。 现在让我们试着复杂化一些: ? 用fill_value参数将空白替换为0: ?...可以非常自信地说它是电子表格上计算的每个数据的支柱。 不幸的是Pandas中并没有vlookup功能! 由于Pandas中没有“Vlookup”函数,因此Merge用与SQL相同的备用函数。

    8.4K30

    Python写入Excel文件-多种实现方式(测试成功,附代码)

    pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。 pandas有两个主要数据结构:Series和DataFrame。...DataFrame DataFrame是一个表格型的数据类型,每列值类型可以不同,是最常用的pandas对象。...DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。...DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构) 示例:写入excel # -*- coding: utf-8 -*- import pandas as pd...## 所谓合并单元格,即以合并区域的左上角的那个单元格为基准,覆盖其他单元格使之称为一个大的单元格。

    4.3K10

    数据分析篇 | 如何配置数据分析利器Jupyter Notebook?

    推荐几个呆鸟常用的小功能: Hinterland,代码自动补全 autopep8 ,对单元格里的代码自动排版 要用 pip install autopep8 安装对应插件,不安装会提示出错; 点击红框里的小锤子图标...-tf -- 文本或 Markdown 单元格字号 -tfs 13 Pandas DataFrame 字号 -dfs 9 输出内容字号 -ofs 8.5 Mathjax 字号 (%) -mathfs...代码里的 virtualenv-name 要改为实际的虚拟环境名称,比如呆鸟用的虚拟环境就叫 Python3,见下图。...:Alt + ←或→ 按单词挪动光标:Ctrl + ←或→ 缩进:TAB 取消缩进:Shift + TAB 删除光标前的整个单词:Ctrl + Backspace 删除光标后的整个单词:Ctrl + Delete...B 删除选中单元格:DD,即连续按两次 D 键 恢复删除的单元格:Z 复制选中单元格:C 剪切选中单元格:X 黏贴选中单元格:V 查找与替换内容:F 隐藏 / 显示输出内容:O 隐藏 / 显示代码行号:

    2.3K30

    Pandas profiling 生成报告并部署的一站式解决方案

    它向用户提供数据集所有特征的描述性统计摘要,尽管其比较常用,但它仍然没有提供足够详细的功能。 Pandas profiling 可以弥补 pandas describe 没有详细数据报告生成的不足。...导入 pandas_profiling from pandas_profiling import ProfileReport 分析DataFrame有两种方法: 可以在 Pandas DataFrame...该Overview包括总体统计的。这包括变量数(数据框的特征或列)、观察数(数据框的行)、缺失单元格、缺失单元格百分比、重复行、重复行百分比和内存中的总大小。...在以表格和直方图格式呈现数据的方式方面,单词和字符选项卡与类别选项卡的作用相同,但它可以更深入地处理小写、大写、标点符号,特殊字符类别也很重要! 3....Profiling”——从 Pandas DataFrame 生成报告的一站式解决方案。

    3.3K10

    10个可以快速用Python进行数据分析的小技巧

    安装 用pip安装或者用conda安装 pip install pandas-profiling conda install -c anaconda pandas-profiling 用法 下面代码是用很久以前的泰坦尼克数据集来演示多功能...Pandas实现交互式作图 Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。...同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?...这个时候就可以用Cufflinks库来实现。 Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。...用notebook替换inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入matplotlib库之前调用。 ?

    1.8K20

    加速Python数据分析的10个简单技巧(上)

    分析pandas dataframe 分析是一个帮助我们理解数据的过程,而pandas分析是一个python包,它正好做到了这一点。...这是一种对Pandas Dataframe进行探索性数据分析的简便、快速的方法。panda df.describe()和df.info()函数通常用作EDA过程的第一步。...2.将互动带到pandas plots pandas有一个内置的.plot()函数作为DataFrame类的一部分。然而,使用该函数呈现的可视化效果并不具有交互性,这使得它的吸引力降低。...相反,也不能排除使用pandas. datafram .plot()函数绘制图表的方便性。如果我们不需要对代码进行重大修改,就可以像用pandas绘制图表那样巧妙地绘制交互式图表,那会怎么样呢?...尝试用笔记本替换内嵌部件,以轻松实现可缩放和可调整大小的绘图。确保在导入Matplotlib库之前调用了函数。 ?

    1.7K50
    领券