首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用Python的Matplotlib库绘制一个足球场效果

    ,而坐标轴用于确定图形中各个元素的位置。...绘制标志和边线:通过使用Matplotlib库的scatter函数绘制球场上的标志和边线,可以使用合适的坐标和大小来绘制这些元素,以使图形更加真实。...添加标题和图例:使用Matplotlib库的title函数添加标题,说明图形的内容,还需要使用legend函数添加图例,解释图形中各个元素的含义。...以及添加标题和图例,这个足球场绘制的实例不仅仅是为了展示Matplotlib库的功能,更是锻炼我们对数据可视化使用的能力,通过将这些技巧应用于实际项目或个人学习中,可以创造出更多有趣和好玩的图形。...最后希望本文的介绍和实例能够为大家提供有用的指导和启发,让我们继续探索数据可视化的奇妙世界,用Matplotlib库创造更多精彩的图形吧!

    37233

    (数据科学学习手札149)用matplotlib轻松绘制漂亮的表格

    ,可以帮助我们自由创作各式各样的数据可视化作品,其中matplotlib.pyplot.table模块就专门用于绘制表格,但是由于参数复杂,且默认样式单一简陋,想基于它绘制出美观的表格需要花费不少功夫。...而我最近发现的一个基于matplotlib的第三方库plottable,用它来生成数据表格图既简单又美观,今天的文章中费老师我就来带大家学习它的常用方法~ 2 基于plottable绘制漂亮的表格   ...控制表格奇数偶数行底色   通过在Table()中设置参数odd_row_color和even_row_color,我们可以传入matplotlib中合法的色彩值进行表格奇数偶数行底色的设置: 2.2.2...控制表头单元格与数据单元格样式   通过Table()中的参数col_label_cell_kw、cell_kw,我们可以分别对表头区域单元格、数据区域单元格进行样式设置,接受matplotlib.patches.Rectangle...ColDef设置相同的group参数,我们可以为具有相同group参数的字段添加分组标识: 为指定字段绘制列边框   通过为ColDef设置参数border,我们可以决定如何绘制不同字段的列边框:

    1.4K10

    Matplotlib 中文用户指南 7.3 事件处理及拾取

    事件还能够理解 matplotlib 坐标系,并且在事件中以像素和数据坐标为单位报告事件位置。...通过设置picker属性启用对艺术家进行拾取后,你需要连接到图画布的pick_event,以便在鼠标按下事件中获取拾取回调。...另外,像Line2D和PatchCollection的某些艺术家可以将附加的元数据(如索引)附加到满足选择器标准的数据中(例如,行中在指定 ε 容差内的所有点) 简单拾取示例 在下面的示例中,我们将行选择器属性设置为标量...不同的 matplotlib 艺术家可以将不同的数据附加到PickEvent。 例如,Line2D将ind属性作为索引附加到拾取点下面的行数据中。...将绘图命令创建的线条连接到拾取事件,并绘制数据的原始时间序列,这些数据生成了被点击的点。 如果在被点击的点的容差范围内存在多于一个点,则可以使用多个子图来绘制多个时间序列。

    1K20

    数据可视化(16)-Seaborn系列 | 变量关系组图pairplot()

    plot_kws=None, diag_kws=None, grid_kws=None, size=None) 参数解读 data: DataFrame hue:变量名称 作用:用颜色将数据进行第二次分组...hue_order:字符串列表 作用:指定调色板中颜色变量的顺序 palette:调色板 vars:变量名列表 {x,y}_vars:变量名列表 作用:指定数据中变量分别用于图的行和列, kind...= sns.load_dataset("iris") """ 案例2: 为联合关系绘制散点图,为单变量绘制核密度估计图 字段变量名查看案例a, 由于值为数字的字段变量有4个,故绘制的关系图为4x4...,为单变量绘制核密度估计图 字段变量名查看案例a, 由于值为数字的字段变量有4个,故绘制的关系图为4x4 通过指定hue来对数据进行分组(效果通过颜色体现), 并指定markers来设置散点图中的点形...) # 构建数据 iris = sns.load_dataset("iris") """ 案例10: 为联合关系绘制散点图,为单变量绘制直方图 通过设置kind=reg为散点图添加线性回归模型 字段变量名查看案例

    2.6K00

    Python数据可视化的10种技能

    散点图 散点图的英文叫做 scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。当然,除了二维的散点图,我们还有三维的散点图。...除了 Matplotlib 外,你也可以使用 Seaborn 进行散点图的绘制。...而 Seaborn 呈现的是个正方形,而且不仅显示出了散点图,还给了这两个变量的分布情况。 Matplotlib 绘制: ? Seaborn 绘制: ?...Matplotlib 绘制: ? Seaborn 绘制: ? 饼图 饼图是常用的统计学模块,可以显示每个部分大小与总和之间的比例。在 Python 数据可视化中,它用的不算多。...在 Matplotlib 中,我们使用 plt.pie(x, labels=None) 函数,其中参数 x 代表要绘制饼图的数据,labels 是缺省值,可以为饼图添加标签。

    2.8K20

    Matplotlib 气球图 制作

    引言 Matplotlib 制作稍带“艺术”的可视化作品,ggplot2 基于其优秀绘图图层设置及多种拓展绘图包可以较为灵活的完成此类任务,但Matplotlib也不是完全不可以,本期推文用python...经典的绘图包Matplotlib进行“气球”图(通过图形合理搭配实现)的绘制,主要涉及Matplotlib 散点图(sactter())及 线 vlines()、mlines()及PatchCollection...数据可视化 本期推文 数据可视化的难点 在于连接“气球”的连接线的绘制,ggplot2 中geom_segment()可以灵活实现这一过程,而Matplotlib 则相对麻烦点,但也是有绘制连接线的方法的...部分解释如下: ① 第 6 行,在 plt.subplots()中设置了fig背景颜色facecolor和边框颜色edgecolor。 ② 第 12- 16 行, 绘制散点图多类别图例。...highlight=scatter#matplotlib.axes.Axes.scatter 下期推文预告 下期推文我们用Matplotlib 进行坡度图的绘制,其效果如下: ? ?

    2.1K20

    Python中得可视化:使用Seaborn绘制常用图表

    要引入Seaborn库,使用的命令是: import seaborn as sns 使用Seaborn,我们可以绘制各种各样的图形,如: 分布曲线 饼图和柱状图 散点图 配对图 热力图 在文章中,我们使用从...此图是机器学习领域的最强大的可视化工具。 让我们看看数据集评级和大小中的两个数字列的散点图是什么样子的。首先,我们将使用matplotlib绘制图,然后我们将看到它在seaborn中的样子。...使用Matplotlib的散点图 使用Seaborn的散点图 在直方图和散点图的代码中,我们将使用sn .joinplot()。 sns.scatterplot()散点图的代码。...热图的最终目的是用彩色图表显示信息的概要。它利用了颜色强度的概念来可视化一系列的值。 我们在足球比赛中经常看到以下类型的图形, ? 足球运动员的热图 在Seaborn中创建这个类型的图。...结论 这就是Seaborn在Python中的工作方式以及我们可以用Seaborn创建的不同类型的图形。正如我已经提到的,Seaborn构建在matplotlib库之上。

    6.7K30

    Pandas知识点-绘制统计图

    使用matplotlib可以绘制各种各样的统计图,Pandas对matplotlib中的绘图方法进行了更高层的封装,使用起来更简单方便。...用DataFrame对象绘制折线图时,有多组数据,调用plot()方法会自动绘制出条折线图,并且自动设置好图例,比matplotlib方便很多。...绘制散点图时,通过x参数和y参数指定散点图的x轴数据和y轴数据。x和y都是DataFrame中的列标签,绘图时会根据列标签读取对应列的数据。 s: 使用s参数设置散点图中点的大小。...在Pandas中,绘制图形除了在plot()中指定kind参数外,还可以通过plot链式调用对应的方法,如plot.scatter()表示绘制散点图,后面绘制柱状图、直方图、饼图等也可以用链式调用的方式...s参数也可以设置成一个数组,如例子中也是用numpy生成一个随机的数组,使每个点的大小不一样。

    3.6K20

    Python绘图全景式教程:提升你的数据表达力

    下面是如何绘制散点图的例子:import seaborn as snsimport matplotlib.pyplot as plt# 加载内置数据集tips = sns.load_dataset("tips...以下是绘制交互式散点图的示例:import plotly.express as px# 加载数据tips = px.data.tips()# 绘制交互式散点图fig = px.scatter(tips,...案例分析:数据可视化应用用Matplotlib绘制线性回归图假设我们有一组简单的线性回归数据,以下是如何使用Matplotlib绘制回归线的示例:import numpy as npimport matplotlib.pyplot...用Seaborn绘制分类数据分布图Seaborn特别擅长绘制分类数据的分布情况。...Matplotlib、Seaborn 和 Plotly 常用函数的大全Python绘图库函数大全在数据可视化过程中,Matplotlib、Seaborn 和 Plotly 是常用的库。

    6200

    matplotlib相关图形绘制(二)

    大家好,我是黄同学 我们之前已经讲述了matplotlib的绘图原理,本文介绍相关图形绘制。 主要是箱线图、散点图、气泡图、雷达图。...《matplotlib绘图的核心原理》 《matplotlib绘图技巧详解(一)》 《matplotlib绘图技巧详解(二)》 《matplotlib绘图技巧详解(三)》 1、绘制箱线图 1)作用 箱线图是由一组数据的最大值...2、绘制散点图与气泡图 散点图与气泡图一起讲是因为它们所用的参数一致。 1)作用   散点图作用:散点图是用二维坐标展示两个变量之间关系的一种图形,强调是衡量两个变量之间的关系。   ...气泡图作用:气泡图用于展示三个变量之间的关系。与散点图类似,绘制时将一个变量放在横轴,另一个变量放在纵轴,而第三个变量则是用气泡的大小来表示。   注意:散点图,气泡图所有的参数一致。...① 绘制小麦产量与降雨量的散点图 df = pd.read_excel(r"C:\Users\黄伟\Desktop\matplotlib.xlsx",sheet_name="散点图与气泡图") plt.figure

    97431

    用Python的Pandas和Matplotlib绘制股票唐奇安通道,布林带通道和鳄鱼组线

    范例中,就用20天为周期,来计算并绘制唐奇安通道。...在如下的DisplayBollingerBands.py范例中,将演示计算并绘制20日周期布林带通道的做法。...范例中,就将演示用pandas库计算相关数值,并用matplotlib绘制鳄鱼组线的做法。...matplotlib和pandas绘制股票MACD指标图,并验证化交易策略 向大家介绍我的新书:《基于股票大数据分析的Python入门实战》 通过机器学习的线性回归算法预测股票走势(用Python实现...用python的matplotlib和numpy库绘制股票K线均线和成交量的整合效果(含量化验证交易策略代码) 用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口爬取数据和验证交易策略代码

    1.8K40

    学会这7个绘图工具包,Matplotlib可视化也没那么难

    Matplotlib是一个跨平台库,是根据数组中的数据制作2D图的可视化分析工具。...Matplotlib提供了丰富的数据绘图工具,主要用于绘制一些统计图形,例如散点图、条形图、折线图、饼图、直方图、箱形图等。...表1 pyplot的基础语法及常用参数 ? 散点图 散点图通常用在回归分析中,描述数据点在直角坐标系平面上的分布。散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。...在广告数据分析中,我们通常会根据散点图来分析两个变量之间的数据分布关系。散点图的主要参数及其说明如表2所示。 表2 散点图的主要参数及其说明 ?...图2 条形图 折线图 折线图是用直线连接排列在工作表的列或行中的数据点而绘制成的图形。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示相等时间间隔下数据的趋势。

    2.9K30

    Python Matplotlib数据可视化 绘制箱形图、散点图和直方图

    文章目录 Python中可以通过matplotlib模块的pyplot子库来完成绘图。Matplotlib可用于创建高质量的图表和图形,也可以用于绘制和可视化结果。...matplotlib是Python优秀的数据可视化第三方库,matplotlib.pyplot是绘制种类可视化图形的命令子库,相当于快捷方式 import matplotlib.pyplot as plt...本文用python对一批运动员数据进行操作,读取数据、数据预处理、matplotlib数据可视化,熟悉用python进行数据分析和可视化的基本方法,并绘制箱形图、散点图和直方图。...绘制散点图 绘制年龄 (Age) 与评分 (Rating) 构成的散点图 import pandas as pd import matplotlib.pyplot as plt import matplotlib...绘制直方图 利用直方图查看运动员的年龄(Age)分布 import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl

    4.8K40
    领券